X. D. Cao, Q. C. Fan, M. Y. Sun, Y. H. Zhang, S. W. Zhang, Y. Y. Wang, J. Chen, Q. Yang, K. H. Sun, H. B. Peng, S. K. Huang, Y. H. Wen
{"title":"Widening the Martensitic Hysteresis in Ni47Ti44Nb9 Shape Memory Alloy by Grain Refinement","authors":"X. D. Cao, Q. C. Fan, M. Y. Sun, Y. H. Zhang, S. W. Zhang, Y. Y. Wang, J. Chen, Q. Yang, K. H. Sun, H. B. Peng, S. K. Huang, Y. H. Wen","doi":"10.1007/s11661-024-07469-7","DOIUrl":null,"url":null,"abstract":"<p>Widening the martensitic hysteresis (<span>\\({T}_{\\text{Dhys}}\\)</span>) in NiTiNb shape memory alloys (SMAs) holds potential for broadening their working temperature range while enabling the room-temperature storage. In this study, the <span>\\({T}_{\\text{Dhys}}\\)</span> is divided into two parts: the thermal-induced hysteresis (<span>\\({T}_{\\text{hys}}\\)</span>) and the deformation-induced hysteresis (<span>\\({T}_{\\text{hys}}{{^{\\prime}}}\\)</span>). In addition to decreasing the martensitic transformation start temperature (<span>\\({M}_{\\text{S}}\\)</span>), it is found that grain refinement is an effective method for widening both <span>\\({T}_{\\text{hys}}\\)</span> and <span>\\({T}_{\\text{hys}}{{^{\\prime}}}\\)</span> of the Ni<sub>47</sub>Ti<sub>44</sub>Nb<sub>9</sub> alloy, a commercial SMA widely used for shape memory couplings. According to thermodynamic analysis, grain refinement increases the dissipation energy (<span>\\(\\Delta {E}_{\\text{dis}}\\)</span>) (caused by thermal friction at martensite/austenite interface), thereby widening <span>\\({T}_{\\text{hys}}\\)</span>. Moreover, the Ni<sub>47</sub>Ti<sub>44</sub>Nb<sub>9</sub> alloy with finer grains has the potential to release more elastic strain energy (<span>\\(\\Delta {E}_{\\text{el}}\\)</span>) after deformation, thereby exhibiting a wider <span>\\({T}_{\\text{hys}}{{^{\\prime}}}\\)</span>. When deforming a large strain, the alloy with finer grains generates more dislocations which stabilize the martensitic phase, thus further widening <span>\\({T}_{\\text{hys}}{{^{\\prime}}}\\)</span>.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07469-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Widening the martensitic hysteresis (\({T}_{\text{Dhys}}\)) in NiTiNb shape memory alloys (SMAs) holds potential for broadening their working temperature range while enabling the room-temperature storage. In this study, the \({T}_{\text{Dhys}}\) is divided into two parts: the thermal-induced hysteresis (\({T}_{\text{hys}}\)) and the deformation-induced hysteresis (\({T}_{\text{hys}}{{^{\prime}}}\)). In addition to decreasing the martensitic transformation start temperature (\({M}_{\text{S}}\)), it is found that grain refinement is an effective method for widening both \({T}_{\text{hys}}\) and \({T}_{\text{hys}}{{^{\prime}}}\) of the Ni47Ti44Nb9 alloy, a commercial SMA widely used for shape memory couplings. According to thermodynamic analysis, grain refinement increases the dissipation energy (\(\Delta {E}_{\text{dis}}\)) (caused by thermal friction at martensite/austenite interface), thereby widening \({T}_{\text{hys}}\). Moreover, the Ni47Ti44Nb9 alloy with finer grains has the potential to release more elastic strain energy (\(\Delta {E}_{\text{el}}\)) after deformation, thereby exhibiting a wider \({T}_{\text{hys}}{{^{\prime}}}\). When deforming a large strain, the alloy with finer grains generates more dislocations which stabilize the martensitic phase, thus further widening \({T}_{\text{hys}}{{^{\prime}}}\).