Privacy Preserving Machine Learning for Electronic Health Records using Federated Learning and Differential Privacy

Naif A. Ganadily, Han J. Xia
{"title":"Privacy Preserving Machine Learning for Electronic Health Records using Federated Learning and Differential Privacy","authors":"Naif A. Ganadily, Han J. Xia","doi":"arxiv-2406.15962","DOIUrl":null,"url":null,"abstract":"An Electronic Health Record (EHR) is an electronic database used by\nhealthcare providers to store patients' medical records which may include\ndiagnoses, treatments, costs, and other personal information. Machine learning\n(ML) algorithms can be used to extract and analyze patient data to improve\npatient care. Patient records contain highly sensitive information, such as\nsocial security numbers (SSNs) and residential addresses, which introduces a\nneed to apply privacy-preserving techniques for these ML models using federated\nlearning and differential privacy.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An Electronic Health Record (EHR) is an electronic database used by healthcare providers to store patients' medical records which may include diagnoses, treatments, costs, and other personal information. Machine learning (ML) algorithms can be used to extract and analyze patient data to improve patient care. Patient records contain highly sensitive information, such as social security numbers (SSNs) and residential addresses, which introduces a need to apply privacy-preserving techniques for these ML models using federated learning and differential privacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用联合学习和差异隐私保护电子健康记录的隐私保护机器学习
电子病历(EHR)是医疗服务提供者用来存储患者医疗记录的电子数据库,其中可能包括诊断、治疗、费用和其他个人信息。机器学习(ML)算法可用于提取和分析患者数据,以改善患者护理。患者记录包含高度敏感的信息,如社会安全号(SSN)和住址,这就需要使用联合学习和差异隐私技术为这些 ML 模型应用隐私保护技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1