Non-Contact Transfer Printing Enabled by an Ultrasonic Droplet Stamp

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-06-25 DOI:10.1002/admt.202400465
Wencheng Yang, Xinyi Lin, Jing Jiang, Fuxing Miao, Jizhou Song
{"title":"Non-Contact Transfer Printing Enabled by an Ultrasonic Droplet Stamp","authors":"Wencheng Yang,&nbsp;Xinyi Lin,&nbsp;Jing Jiang,&nbsp;Fuxing Miao,&nbsp;Jizhou Song","doi":"10.1002/admt.202400465","DOIUrl":null,"url":null,"abstract":"<p>Transfer printing is an important material heterogeneous technique with unique capability for developing existing and envisioned electronic or optoelectronic systems. Here, a simple design of ultrasonic droplet stamp is reported featuring a water droplet on an acoustic resonator attached to a glass sheet, for developing an efficient non-contact transfer printing. The water droplet offers the benefits of a gentle and conformal contact, yielding an enough adhesion for a reliable pickup in the absence of ultrasound, and ejects a sub-droplet rapidly due to the Raleigh instability with the ultrasound for an easy non-contact printing. Experimental studies are carried out to investigate the transient response of ultrasonic droplet stamp under the action of ultrasound and showed that the proposed stamp exhibited extraordinary capabilities of damage-free pickup and receiver-independent printing. Demonstrations of the ultrasonic droplet stamp in transfer printing of thin inks with different materials and shapes onto various flat, curved and rough surfaces illustrate its great potential for heterogeneous integration and deterministic assembly.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 17","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400465","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transfer printing is an important material heterogeneous technique with unique capability for developing existing and envisioned electronic or optoelectronic systems. Here, a simple design of ultrasonic droplet stamp is reported featuring a water droplet on an acoustic resonator attached to a glass sheet, for developing an efficient non-contact transfer printing. The water droplet offers the benefits of a gentle and conformal contact, yielding an enough adhesion for a reliable pickup in the absence of ultrasound, and ejects a sub-droplet rapidly due to the Raleigh instability with the ultrasound for an easy non-contact printing. Experimental studies are carried out to investigate the transient response of ultrasonic droplet stamp under the action of ultrasound and showed that the proposed stamp exhibited extraordinary capabilities of damage-free pickup and receiver-independent printing. Demonstrations of the ultrasonic droplet stamp in transfer printing of thin inks with different materials and shapes onto various flat, curved and rough surfaces illustrate its great potential for heterogeneous integration and deterministic assembly.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超声波液滴印章实现非接触式转移印刷
转印是一种重要的材料异构技术,具有开发现有和设想中的电子或光电系统的独特能力。本文报告了一种简单的超声液滴印章设计,其特点是在玻璃片上连接一个声共振上的水滴,用于开发高效的非接触式转移印花。水滴具有平缓和保形接触的优点,在没有超声波的情况下也能产生足够的附着力,从而实现可靠的拾取,并且由于水滴在超声波作用下的雷利不稳定性,水滴会迅速喷出,从而实现轻松的非接触印刷。实验研究对超声波液滴印章在超声波作用下的瞬态响应进行了调查,结果表明,所提出的印章具有无损拾取和独立于接收器印刷的非凡能力。超声液滴印章在各种平面、曲面和粗糙表面上转移印刷不同材料和形状的薄油墨的演示,说明了它在异质集成和确定性装配方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
A Nanomechanical Transducer for Remote Signal Transmission onto the Tympanic Membrane–Playing Music on a Different Drum (Adv. Mater. Technol. 22/2024) Dual-Material Aerosol Jet Printing of Magneto-Responsive Polymers with In-Process Tailorable Composition for Small-Scale Soft Robotics (Adv. Mater. Technol. 22/2024) Masthead: (Adv. Mater. Technol. 22/2024) Realizing the High Efficiency of Type-II Superlattice Infrared Sensors Integrated Wire-Grid Polarizer via Femtosecond Laser Polishing (Adv. Mater. Technol. 22/2024) High-Throughput Microfluidic 3D Outer Blood-Retinal Barrier Model in a 96-Well Format: Analysis of Cellular Interactions and Barrier Function in Retinal Health and Disease (Adv. Mater. Technol. 22/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1