New pyrazole–pyridazine hybrids as selective COX-2 inhibitors: design, synthesis, molecular docking, in silico studies and investigation of their anti-inflammatory potential by evaluation of TNF-α, IL-6, PGE-2 and NO in LPS-induced RAW264.7 macrophages†
Eman O. Osman, Nadia A. Khalil, Alaa Magdy and Yara El-Dash
{"title":"New pyrazole–pyridazine hybrids as selective COX-2 inhibitors: design, synthesis, molecular docking, in silico studies and investigation of their anti-inflammatory potential by evaluation of TNF-α, IL-6, PGE-2 and NO in LPS-induced RAW264.7 macrophages†","authors":"Eman O. Osman, Nadia A. Khalil, Alaa Magdy and Yara El-Dash","doi":"10.1039/D4MD00135D","DOIUrl":null,"url":null,"abstract":"<p >Hybrid-based design has gained significant interest in the development of novel active substances with anti-inflammatory properties. In this study, two series of new pyrazole–pyridazine-based hybrids, <strong>5a–f</strong> and <strong>6a–f</strong>, were designed and synthesized. Molecules containing pyrazole and pyridazine pharmacophores in a single molecule, each with a unique mechanism of action and different pharmacological characteristics, are believed to exert higher biological activity. The cell viability of all compounds was evaluated using MTT assay in LPS-induced RAW264.7 macrophages. <em>In vitro</em> COX-1 and COX-2 inhibition assays were performed for the investigation of the anti-inflammatory activity of target compounds. Trimethoxy derivatives <strong>5f</strong> and <strong>6f</strong> were the most active candidates, demonstrating higher COX-2 inhibitory action than celecoxib, with IC<small><sub>50</sub></small> values of 1.50 and 1.15 μM, respectively. Bromo derivative <strong>6e</strong> demonstrated a COX-2 inhibitory activity comparable to celecoxib. Further, the ability of compounds <strong>5f</strong>, <strong>6e</strong>, and <strong>6f</strong> to inhibit the generation of specific pro-inflammatory cytokines and mediators, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and prostaglandin-E2 (PGE-2), in RAW264.7 macrophages stimulated by LPS was also estimated. Compounds <strong>5f</strong> and <strong>6f</strong> demonstrated the most potent activity. Morover, according to the investigation using molecular modeling studies, derivatives <strong>5f</strong> and <strong>6f</strong> showed respectable binding affinity towards the COX-2 active site compared to the reference ligand. Moreover, the ADME parameters, physicochemical characteristics, pharmacokinetic characteristics, and l of the most potent compounds were also computed.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 8","pages":" 2692-2708"},"PeriodicalIF":3.5970,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00135d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid-based design has gained significant interest in the development of novel active substances with anti-inflammatory properties. In this study, two series of new pyrazole–pyridazine-based hybrids, 5a–f and 6a–f, were designed and synthesized. Molecules containing pyrazole and pyridazine pharmacophores in a single molecule, each with a unique mechanism of action and different pharmacological characteristics, are believed to exert higher biological activity. The cell viability of all compounds was evaluated using MTT assay in LPS-induced RAW264.7 macrophages. In vitro COX-1 and COX-2 inhibition assays were performed for the investigation of the anti-inflammatory activity of target compounds. Trimethoxy derivatives 5f and 6f were the most active candidates, demonstrating higher COX-2 inhibitory action than celecoxib, with IC50 values of 1.50 and 1.15 μM, respectively. Bromo derivative 6e demonstrated a COX-2 inhibitory activity comparable to celecoxib. Further, the ability of compounds 5f, 6e, and 6f to inhibit the generation of specific pro-inflammatory cytokines and mediators, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and prostaglandin-E2 (PGE-2), in RAW264.7 macrophages stimulated by LPS was also estimated. Compounds 5f and 6f demonstrated the most potent activity. Morover, according to the investigation using molecular modeling studies, derivatives 5f and 6f showed respectable binding affinity towards the COX-2 active site compared to the reference ligand. Moreover, the ADME parameters, physicochemical characteristics, pharmacokinetic characteristics, and l of the most potent compounds were also computed.
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.