High UV Transparent Conductivity of SrMoO3 Thin Films

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-06-24 DOI:10.1021/acs.cgd.3c01237
Xiaomin Jia, Yanbin Chen, Ce-Wen Nan, Jing Ma* and Chonglin Chen*, 
{"title":"High UV Transparent Conductivity of SrMoO3 Thin Films","authors":"Xiaomin Jia,&nbsp;Yanbin Chen,&nbsp;Ce-Wen Nan,&nbsp;Jing Ma* and Chonglin Chen*,&nbsp;","doi":"10.1021/acs.cgd.3c01237","DOIUrl":null,"url":null,"abstract":"<p >The perovskite oxide SrMoO<sub>3</sub> has attracted significant attention for its potential applications in ultraviolet (UV) transparent conductors. Thus far, synthesizing high-quality epitaxial SrMoO<sub>3</sub> thin films by pulsed laser deposition (PLD) is usually under highly reducing (Ar or Ar-H<sub>2</sub> gas mixture) atmospheres. Here, we grew SrMoO<sub>3</sub> epitaxial films using the PLD technique at a base pressure below 1 × 10<sup>–5</sup> Pa without any gas supply to optimize their optical and electrical properties. By depositing these films on the (001) SrTiO<sub>3</sub>, (001) LaAlO<sub>3</sub>, and (001) MgO substrates, the as-grown SrMoO<sub>3</sub> films, with a nominal lattice mismatch in the range of −4.8 to +5.7% and a thickness of 20–60 nm, show prominent transparent conductivity in both visible and UV wavelengths. All the films exhibit metallic-like conductivity, with a room-temperature resistivity varying from 10 to 60 μΩ·cm. The resistivity increases with decreasing thickness. Notably, we can achieve extremely high transmittance, exceeding 80% for wavelengths ranging from 300 to 500 nm, and a low resistivity of approximately 20 μΩ·cm in SrMoO<sub>3</sub> films as thin as 20 nm. The excellent UV transparent conducting properties that are insensitive to the substrate type and film thickness make SrMoO<sub>3</sub> films a promising material for various photoelectronic devices and energy-harvesting applications.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.3c01237","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The perovskite oxide SrMoO3 has attracted significant attention for its potential applications in ultraviolet (UV) transparent conductors. Thus far, synthesizing high-quality epitaxial SrMoO3 thin films by pulsed laser deposition (PLD) is usually under highly reducing (Ar or Ar-H2 gas mixture) atmospheres. Here, we grew SrMoO3 epitaxial films using the PLD technique at a base pressure below 1 × 10–5 Pa without any gas supply to optimize their optical and electrical properties. By depositing these films on the (001) SrTiO3, (001) LaAlO3, and (001) MgO substrates, the as-grown SrMoO3 films, with a nominal lattice mismatch in the range of −4.8 to +5.7% and a thickness of 20–60 nm, show prominent transparent conductivity in both visible and UV wavelengths. All the films exhibit metallic-like conductivity, with a room-temperature resistivity varying from 10 to 60 μΩ·cm. The resistivity increases with decreasing thickness. Notably, we can achieve extremely high transmittance, exceeding 80% for wavelengths ranging from 300 to 500 nm, and a low resistivity of approximately 20 μΩ·cm in SrMoO3 films as thin as 20 nm. The excellent UV transparent conducting properties that are insensitive to the substrate type and film thickness make SrMoO3 films a promising material for various photoelectronic devices and energy-harvesting applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SrMoO3 薄膜的高紫外线透明导电性
过氧化物 SrMoO3 因其在紫外线(UV)透明导体中的潜在应用而备受关注。迄今为止,通过脉冲激光沉积(PLD)合成高质量的 SrMoO3 外延薄膜通常是在高还原性(氩气或氩气-H2 混合气体)气氛下进行的。在这里,我们使用 PLD 技术在基压低于 1 × 10-5 Pa 的条件下生长 SrMoO3 外延薄膜,无需任何气体供应,以优化其光学和电学特性。通过在 (001) SrTiO3、(001) LaAlO3 和 (001) MgO 基底上沉积这些薄膜,名义晶格失配范围为 -4.8% 至 +5.7%、厚度为 20-60 纳米的 SrMoO3 薄膜在可见光和紫外线波长下都显示出突出的透明导电性。所有薄膜都具有类似金属的导电性,室温电阻率在 10 到 60 μΩ-cm 之间。电阻率随厚度的减小而增大。值得注意的是,在波长为 300 至 500 纳米的 SrMoO3 薄膜中,我们可以获得极高的透射率(超过 80%)和低电阻率(约 20 μΩ-cm)。SrMoO3 薄膜具有优异的紫外线透明导电性能,对基底类型和薄膜厚度不敏感,因此有望成为各种光电子器件和能量收集应用的理想材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Photocatalytic Synthesis of Au Nanoplates Ion Site Substitution in a Sulfonylcalix[4]arene-Supported Ln8 (Ln = Tb and Eu) Coordination Wheel with Tunable Luminescence Functionalized Covalent Triazine Framework (CTF) for Catalytic CO2 Fixation and Synthesis of Value-Added Chemicals Flexible Ligands Constructed Metal–Organic Frameworks as Visual Test Paper for Fluorescent Detection Insights into the Illuminating World of Nanocrystalline Materials: Structure–Property Relationships in Precise Nanocrystals to Ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1