Optimal Oxidation Conditions Using Water Vapor for the Topotactic Formation of High-Quality Vanadium Dioxide Films from Vanadium Sesquioxide Epitaxial Films

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-06-17 DOI:10.1021/acs.cgd.4c00495
Hisato Nishii, Takumi Ikenoue, Masao Miyake* and Tetsuji Hirato, 
{"title":"Optimal Oxidation Conditions Using Water Vapor for the Topotactic Formation of High-Quality Vanadium Dioxide Films from Vanadium Sesquioxide Epitaxial Films","authors":"Hisato Nishii,&nbsp;Takumi Ikenoue,&nbsp;Masao Miyake* and Tetsuji Hirato,&nbsp;","doi":"10.1021/acs.cgd.4c00495","DOIUrl":null,"url":null,"abstract":"<p >Vanadium dioxide (VO<sub>2</sub>) films, which undergo a metal–insulator transition (MIT) at 68 °C, are promising materials for switching device applications. Topotactic oxidation of vanadium sesquioxide (V<sub>2</sub>O<sub>3</sub>) epitaxial films yields highly oriented VO<sub>2</sub> films. However, the effect of oxidation conditions on the MIT properties of the resulting VO<sub>2</sub> films has not been thoroughly explored. In this study, we investigated the effects of oxidation conditions, such as oxygen partial pressure, temperature, and time, on the topotactic transformation from V<sub>2</sub>O<sub>3</sub> to VO<sub>2</sub> films and fabricated high-quality VO<sub>2</sub> films. Thermodynamic calculations demonstrated that oxidation atmospheres with thermodynamically stable VO<sub>2</sub> can be formed using a gas mixture containing water vapor and hydrogen. Experiments with different oxidation parameters revealed that the optimal oxidation conditions are oxygen partial pressures ranging from 10<sup>–20</sup> to 10<sup>–8</sup> atm, oxidation temperature of 500 °C, and oxidation times exceeding 6 h. Under these conditions, V<sub>2</sub>O<sub>3</sub> was topotactically oxidized to VO<sub>2</sub>, and the electrical resistance of the resulting VO<sub>2</sub> films changed by 4.7 orders of magnitude across the MIT. This study opens new avenues for fabricating highly sensitive VO<sub>2</sub>-based switching devices.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00495","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vanadium dioxide (VO2) films, which undergo a metal–insulator transition (MIT) at 68 °C, are promising materials for switching device applications. Topotactic oxidation of vanadium sesquioxide (V2O3) epitaxial films yields highly oriented VO2 films. However, the effect of oxidation conditions on the MIT properties of the resulting VO2 films has not been thoroughly explored. In this study, we investigated the effects of oxidation conditions, such as oxygen partial pressure, temperature, and time, on the topotactic transformation from V2O3 to VO2 films and fabricated high-quality VO2 films. Thermodynamic calculations demonstrated that oxidation atmospheres with thermodynamically stable VO2 can be formed using a gas mixture containing water vapor and hydrogen. Experiments with different oxidation parameters revealed that the optimal oxidation conditions are oxygen partial pressures ranging from 10–20 to 10–8 atm, oxidation temperature of 500 °C, and oxidation times exceeding 6 h. Under these conditions, V2O3 was topotactically oxidized to VO2, and the electrical resistance of the resulting VO2 films changed by 4.7 orders of magnitude across the MIT. This study opens new avenues for fabricating highly sensitive VO2-based switching devices.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用水蒸气拓扑定向形成高质量二氧化钒外延薄膜的最佳氧化条件
二氧化钒(VO2)薄膜在 68 °C时会发生金属-绝缘体转变(MIT),是开关器件应用中很有前途的材料。二次氧化钒(V2O3)外延薄膜的拓扑氧化可产生高度取向的 VO2 薄膜。然而,氧化条件对所得 VO2 薄膜 MIT 特性的影响尚未得到深入探讨。在本研究中,我们研究了氧分压、温度和时间等氧化条件对 V2O3 向 VO2 薄膜拓扑转化的影响,并制备了高质量的 VO2 薄膜。热力学计算表明,使用含有水蒸气和氢气的混合气体可以形成热力学稳定的 VO2 氧化气氛。不同氧化参数的实验表明,最佳氧化条件是氧分压在 10-20 至 10-8 atm 之间,氧化温度为 500 ℃,氧化时间超过 6 h。在这些条件下,V2O3 被活化氧化成 VO2,所制得的 VO2 薄膜在整个 MIT 上的电阻变化了 4.7 个数量级。这项研究为制造基于 VO2 的高灵敏开关器件开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Photocatalytic Synthesis of Au Nanoplates Ion Site Substitution in a Sulfonylcalix[4]arene-Supported Ln8 (Ln = Tb and Eu) Coordination Wheel with Tunable Luminescence Functionalized Covalent Triazine Framework (CTF) for Catalytic CO2 Fixation and Synthesis of Value-Added Chemicals Flexible Ligands Constructed Metal–Organic Frameworks as Visual Test Paper for Fluorescent Detection Insights into the Illuminating World of Nanocrystalline Materials: Structure–Property Relationships in Precise Nanocrystals to Ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1