In Situ Photodeposition of Au Nanoparticle Plasma: Enhanced Defect-State g-C3N4 Photocatalytic Hydrogen Evolution

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-06-17 DOI:10.1021/acs.cgd.4c00584
Yahao Zhao, Wen Liu, Peng Liu, Qian Fu, Difu Zhan, Furong Ye, Zhengwang Cheng, Jiayi Tian, Yizhong Huang and Changcun Han*, 
{"title":"In Situ Photodeposition of Au Nanoparticle Plasma: Enhanced Defect-State g-C3N4 Photocatalytic Hydrogen Evolution","authors":"Yahao Zhao,&nbsp;Wen Liu,&nbsp;Peng Liu,&nbsp;Qian Fu,&nbsp;Difu Zhan,&nbsp;Furong Ye,&nbsp;Zhengwang Cheng,&nbsp;Jiayi Tian,&nbsp;Yizhong Huang and Changcun Han*,&nbsp;","doi":"10.1021/acs.cgd.4c00584","DOIUrl":null,"url":null,"abstract":"<p >To further enhance the hydrogen evolution activity of g-C<sub>3</sub>N<sub>4</sub>, Au nanoparticle (NP)-modified defective-state g-C<sub>3</sub>N<sub>4</sub> nanosheet photocatalysts (Au/HCN) were successfully prepared through in situ photodeposition in this study. The prepared Au/HCN exhibited an excellent photocatalytic hydrogen evolution activity. Under full spectrum, the hydrogen production rate of Au/HCN (7289 μmol·g<sup>–1</sup>·h<sup>–1</sup>) was 1.6 times higher than that of Au NPs-modified pure g-C<sub>3</sub>N<sub>4</sub> nanosheets (Au/CN) (4437 μmol·g<sup>–1</sup>·h<sup>–1</sup>) and 4.3 times higher than that of Au NPs-modified bulk g-C<sub>3</sub>N<sub>4</sub> (Au/BCN) (1664 μmol·g<sup>–1</sup>·h<sup>–1</sup>). The photoluminescence and steady-state photovoltage spectra indicate that Au/HCN has the highest ability for photogenerated charge separation and photogenerated electron transfer efficiency. The ultraviolet–visible spectrophotometer (DRS) spectra revealed an additional light absorption peak at 520 nm for Au/HCN. The above results indicate that the defects can effectively inhibit the recombination of photogenerated charges from HCN. In addition, the synergistic interaction between Au NPs and HCN, as well as the surface plasmon resonance effect of Au NPs, promoted photocatalytic hydrogen evolution.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00584","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To further enhance the hydrogen evolution activity of g-C3N4, Au nanoparticle (NP)-modified defective-state g-C3N4 nanosheet photocatalysts (Au/HCN) were successfully prepared through in situ photodeposition in this study. The prepared Au/HCN exhibited an excellent photocatalytic hydrogen evolution activity. Under full spectrum, the hydrogen production rate of Au/HCN (7289 μmol·g–1·h–1) was 1.6 times higher than that of Au NPs-modified pure g-C3N4 nanosheets (Au/CN) (4437 μmol·g–1·h–1) and 4.3 times higher than that of Au NPs-modified bulk g-C3N4 (Au/BCN) (1664 μmol·g–1·h–1). The photoluminescence and steady-state photovoltage spectra indicate that Au/HCN has the highest ability for photogenerated charge separation and photogenerated electron transfer efficiency. The ultraviolet–visible spectrophotometer (DRS) spectra revealed an additional light absorption peak at 520 nm for Au/HCN. The above results indicate that the defects can effectively inhibit the recombination of photogenerated charges from HCN. In addition, the synergistic interaction between Au NPs and HCN, as well as the surface plasmon resonance effect of Au NPs, promoted photocatalytic hydrogen evolution.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金纳米粒子等离子体的原位光沉积:增强型缺陷态 g-C3N4 光催化氢气吸收
为了进一步提高 g-C3N4 的氢气催化活性,本研究通过原位光沉积成功制备了金纳米粒子(NP)修饰的缺陷态 g-C3N4 纳米片光催化剂(Au/HCN)。制备的 Au/HCN 具有优异的光催化氢气进化活性。在全光谱条件下,Au/HCN的产氢率(7289 μmol-g-1-h-1)是Au NPs修饰纯g-C3N4纳米片(Au/CN)(4437 μmol-g-1-h-1)的1.6倍,是Au NPs修饰块状g-C3N4(Au/BCN)(1664 μmol-g-1-h-1)的4.3倍。光致发光和稳态光电压光谱表明,Au/HCN 的光生电荷分离能力和光生电子转移效率最高。紫外-可见分光光度计(DRS)光谱显示,Au/HCN 在 520 纳米处有一个额外的光吸收峰。上述结果表明,缺陷能有效抑制 HCN 光生电荷的重组。此外,Au NPs 与 HCN 之间的协同作用以及 Au NPs 的表面等离子体共振效应促进了光催化氢气进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Photocatalytic Synthesis of Au Nanoplates Ion Site Substitution in a Sulfonylcalix[4]arene-Supported Ln8 (Ln = Tb and Eu) Coordination Wheel with Tunable Luminescence Functionalized Covalent Triazine Framework (CTF) for Catalytic CO2 Fixation and Synthesis of Value-Added Chemicals Flexible Ligands Constructed Metal–Organic Frameworks as Visual Test Paper for Fluorescent Detection Insights into the Illuminating World of Nanocrystalline Materials: Structure–Property Relationships in Precise Nanocrystals to Ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1