Using interfacial behavior and adsorption kinetics measurements as a predictor of bulk hydrophobic development of paper supercritically impregnated with food-grade waxes

IF 4.9 2区 工程技术 Q1 MATERIALS SCIENCE, PAPER & WOOD Cellulose Pub Date : 2024-07-02 DOI:10.1007/s10570-024-06032-2
Brenda Helen Hutton-Prager, Joseph P. Fallon, Blake Henke, Raymond Zhang, Withanage Keshani Rangika Perera
{"title":"Using interfacial behavior and adsorption kinetics measurements as a predictor of bulk hydrophobic development of paper supercritically impregnated with food-grade waxes","authors":"Brenda Helen Hutton-Prager, Joseph P. Fallon, Blake Henke, Raymond Zhang, Withanage Keshani Rangika Perera","doi":"10.1007/s10570-024-06032-2","DOIUrl":null,"url":null,"abstract":"<p>Supercritical Impregnation methods are becoming popular in the development of food packaging materials. Bulk functional improvements of cellulose substrates using this method may be influenced by interfacial interactions between the impregnated solutes and cellulose. Hence, an interfacial adsorption kinetics study of solute molecules onto the substrate can provide insight on bulk property development, leading to an optimized packaging material with improved functionality. Paper substrates were impregnated with two food-grade waxes: Alkyl Ketene Dimer (AKD) and Carnauba Wax (CW). Hydrophobic development was monitored over a 3-week period. A quartz crystal microbalance (QCM-D) was used to determine interfacial characteristics and behavior of each wax with cellulose, and adsorption kinetics were quantified to compare the mass transfer processes of each wax at the interface. AKD significantly contributed to the substrate’s hydrophobic development over time. CW generated mildly hydrophobic substrates only when heated. AKD strongly adhered to the cellulose fibers at the interface, and demonstrated a 3-stage kinetic adsorption process, tentatively assigned (i) diffusion through the solvent; (ii) diffusion through the substrate; and (iii) attachment onto the fibers. CW readily washed off the cellulose surface, demonstrating only the first adsorption process. The different chemical structures also impacted these behaviors, as did concentration and temperature.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":511,"journal":{"name":"Cellulose","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10570-024-06032-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Supercritical Impregnation methods are becoming popular in the development of food packaging materials. Bulk functional improvements of cellulose substrates using this method may be influenced by interfacial interactions between the impregnated solutes and cellulose. Hence, an interfacial adsorption kinetics study of solute molecules onto the substrate can provide insight on bulk property development, leading to an optimized packaging material with improved functionality. Paper substrates were impregnated with two food-grade waxes: Alkyl Ketene Dimer (AKD) and Carnauba Wax (CW). Hydrophobic development was monitored over a 3-week period. A quartz crystal microbalance (QCM-D) was used to determine interfacial characteristics and behavior of each wax with cellulose, and adsorption kinetics were quantified to compare the mass transfer processes of each wax at the interface. AKD significantly contributed to the substrate’s hydrophobic development over time. CW generated mildly hydrophobic substrates only when heated. AKD strongly adhered to the cellulose fibers at the interface, and demonstrated a 3-stage kinetic adsorption process, tentatively assigned (i) diffusion through the solvent; (ii) diffusion through the substrate; and (iii) attachment onto the fibers. CW readily washed off the cellulose surface, demonstrating only the first adsorption process. The different chemical structures also impacted these behaviors, as did concentration and temperature.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将界面行为和吸附动力学测量结果用作食品级蜡超临界浸渍纸张疏水性发展的预测指标
超临界浸渍法在食品包装材料的开发中越来越受欢迎。使用这种方法改善纤维素基材的体质功能可能会受到浸渍溶质与纤维素之间界面相互作用的影响。因此,对溶质分子在基材上的界面吸附动力学进行研究,可以深入了解基材性能的发展,从而优化包装材料,提高其功能。纸基材浸渍了两种食品级蜡:烷基酮二聚体 (AKD) 和棕榈蜡 (CW)。在 3 周的时间内监测疏水性的发展。使用石英晶体微天平 (QCM-D) 确定了每种蜡与纤维素的界面特性和行为,并对吸附动力学进行了量化,以比较每种蜡在界面上的传质过程。随着时间的推移,AKD 对基底疏水性的发展起了重要作用。CW 只有在加热时才会产生轻度疏水基底。AKD 在界面上强烈地附着在纤维素纤维上,并表现出三个阶段的动力学吸附过程,暂定为:(1)通过溶剂扩散;(2)通过基底扩散;(3)附着在纤维上。化武很容易从纤维素表面冲洗下来,这只证明了第一个吸附过程。不同的化学结构以及浓度和温度也会影响这些行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellulose
Cellulose 工程技术-材料科学:纺织
CiteScore
10.10
自引率
10.50%
发文量
580
审稿时长
3-8 weeks
期刊介绍: Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.
期刊最新文献
Harnessing the power of green and rooibos tea aqueous extracts for obtaining colored bioactive cotton and cotton/flax fabrics intended for disposable and reusable medical textiles Synergistic effect of synthesized green nanocomposite of chitosan-activated carbon thin film (ACTF)@opuntia ficus-indica shell for removal of Sn (II) and As (V) ions from aqueous solution Agar/carboxymethyl cellulose composite film loaded with hydroxyapatite nanoparticles for bone regeneration Transparent, flame retardant and machinable cellulose/silica composite aerogels with nanoporous dual network for energy-efficient buildings A molecular dynamics study of the effects of silane and cellulose nanocrystals at a glass fiber and epoxy interphase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1