Higher-Order Iterative Learning Control Algorithms for Linear Systems

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED Computational Mathematics and Mathematical Physics Pub Date : 2024-06-07 DOI:10.1134/s0965542524700064
P. V. Pakshin, J. P. Emelianova, M. A. Emelianov
{"title":"Higher-Order Iterative Learning Control Algorithms for Linear Systems","authors":"P. V. Pakshin, J. P. Emelianova, M. A. Emelianov","doi":"10.1134/s0965542524700064","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Iterative learning control (ILC) algorithms appeared in connection with the problems of increasing the accuracy of performing repetitive operations by robots. They use information from previous repetitions to adjust the control signal on the current repetition. Most often, information from the previous repetition only is used. ILC algorithms that use information from several previous iterations are called higher-order algorithms. Recently, interest in these algorithms has increased in the literature in connection with robotic additive manufacturing problems. However, in addition to the fact that these algorithms have been little studied, there are conflicting estimates regarding their properties. This paper proposes new higher-order ILC algorithms for linear discrete and differential systems. The idea of these algorithms is based on an analogy with multi-step methods in optimization theory, in particular, with the heavy ball method. An example is given that confirms the possibility to accelerate convergence of the learning error when using such algorithms.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Iterative learning control (ILC) algorithms appeared in connection with the problems of increasing the accuracy of performing repetitive operations by robots. They use information from previous repetitions to adjust the control signal on the current repetition. Most often, information from the previous repetition only is used. ILC algorithms that use information from several previous iterations are called higher-order algorithms. Recently, interest in these algorithms has increased in the literature in connection with robotic additive manufacturing problems. However, in addition to the fact that these algorithms have been little studied, there are conflicting estimates regarding their properties. This paper proposes new higher-order ILC algorithms for linear discrete and differential systems. The idea of these algorithms is based on an analogy with multi-step methods in optimization theory, in particular, with the heavy ball method. An example is given that confirms the possibility to accelerate convergence of the learning error when using such algorithms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性系统的高阶迭代学习控制算法
摘要 迭代学习控制(ILC)算法的出现与提高机器人执行重复操作的准确性问题有关。它们利用前一次重复操作的信息来调整当前重复操作的控制信号。大多数情况下,只使用前一次重复的信息。使用前几次迭代信息的 ILC 算法被称为高阶算法。最近,这些算法在与机器人增材制造问题相关的文献中越来越受到关注。然而,除了对这些算法研究甚少这一事实外,对其特性的估计也相互矛盾。本文针对线性离散和微分系统提出了新的高阶 ILC 算法。这些算法的思想基于与优化理论中的多步方法,特别是重球方法的类比。举例说明了在使用这些算法时加速学习误差收敛的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
期刊最新文献
Difference Operator Approximations on Nonstandard Rectangular Grid The MDM Algorithm and the Sylvester Problem Regularization of the Solution to Degenerate Systems of Algebraic Equations Exemplified by Identification of the Virial Equation of State of a Real Gas New Classes of Solutions of the σ-Commutation Problem ( $$\sigma \ne 0,\; \pm 1$$ ) for Toeplitz and Hankel Matrices within a Unified Approach Complex Narayana Quaternions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1