Photothermal Effect and Fenton-Like Oxidation for Synergistic Removal of Fluoroquinolones Antibiotics under Near-Neutral Conditions

IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL ChemPhotoChem Pub Date : 2024-07-01 DOI:10.1002/cptc.202400103
Lanya Jiao, Dr. Jiao Meng, Shujun Wang, Prof. Xuan Sun
{"title":"Photothermal Effect and Fenton-Like Oxidation for Synergistic Removal of Fluoroquinolones Antibiotics under Near-Neutral Conditions","authors":"Lanya Jiao,&nbsp;Dr. Jiao Meng,&nbsp;Shujun Wang,&nbsp;Prof. Xuan Sun","doi":"10.1002/cptc.202400103","DOIUrl":null,"url":null,"abstract":"<p>Defect-enriched mesoporous CuO nanosheets (NSs) were constructed to investigate the cooperative photo-Fenton and photothermal-Fenton catalysis on degradation of fluoroquinolones (FQ) antibiotics. The oxygen vacancies provide abundant active sites to bind the substrates and inhibit charge recombination, by all means to enhance Fenton-like activity. Two disparate spectral selective functions of photoexcitation and photothermal conversion were achieved on CuO NS, which to promote the Fenton activity synergistically. Visible light induced photoexcitation to facilitate the generation of Cu<sup>+</sup> and ⋅OH, while near-infrared light converted into heat to promote charge separation and accelerate medium transport. Ultimately, as a unitary catalyst system, the CuO NS integrated the Lewis acid catalysis, Fenton-like catalysis and photothermal catalysis that rapidly and sustainably degraded antibiotics under near-neutral conditions.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 11","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400103","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Defect-enriched mesoporous CuO nanosheets (NSs) were constructed to investigate the cooperative photo-Fenton and photothermal-Fenton catalysis on degradation of fluoroquinolones (FQ) antibiotics. The oxygen vacancies provide abundant active sites to bind the substrates and inhibit charge recombination, by all means to enhance Fenton-like activity. Two disparate spectral selective functions of photoexcitation and photothermal conversion were achieved on CuO NS, which to promote the Fenton activity synergistically. Visible light induced photoexcitation to facilitate the generation of Cu+ and ⋅OH, while near-infrared light converted into heat to promote charge separation and accelerate medium transport. Ultimately, as a unitary catalyst system, the CuO NS integrated the Lewis acid catalysis, Fenton-like catalysis and photothermal catalysis that rapidly and sustainably degraded antibiotics under near-neutral conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近中性条件下协同去除氟喹诺酮类抗生素的光热效应和芬顿类氧化作用
研究人员构建了富含缺陷的介孔氧化铜纳米片(NSs),以研究光-芬顿催化和光热-芬顿催化在降解氟喹诺酮类抗生素(FQ)中的协同作用。氧空位提供了丰富的活性位点,可结合底物并抑制电荷重组,从而提高芬顿催化活性。在 CuO NS 上实现了光激发和光热转换两种不同的光谱选择功能,从而协同促进了 Fenton 活性。可见光诱导光激发以促进 Cu+ 和 -OH 的生成,而近红外光则转化为热量以促进电荷分离和加速介质传输。最终,作为一个单元催化剂系统,CuO NS 集成了路易斯酸催化、类芬顿催化和光热催化,可在近中性条件下快速、持续地降解抗生素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemPhotoChem
ChemPhotoChem Chemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊最新文献
Front Cover: Photochemical Vs Thermal Acid Catalysed Cyclization of Cannabigerol (CBG): An Unexpected Selectivity (ChemPhotoChem 11/2024) Front Cover: Diindeno-Fused Corannulene-Extended Tetrathiafulvalenes (ChemPhotoChem 10/2024) Spectroscopic Response of Chiral Proteophenes Binding to Two Chiral Insulin Amyloids Novel Photobase Generators Derived from Proazaphosphatrane–Aryl Borate for High-Pressure Mercury Lamp Lithography Modulating N–H Bond Cleavage in Catalytic Ammonia Oxidation Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1