Self-Organizing Sub-μm Surface Structures Stimulated by Microplasma Generated Reactive Species and Short-Pulsed Laser Irradiation

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-06-27 DOI:10.1021/acsomega.3c10033
Sascha Chur*, Lennart Kulik, Volker Schulz-von der Gathen, Marc Böke and Judith Golda, 
{"title":"Self-Organizing Sub-μm Surface Structures Stimulated by Microplasma Generated Reactive Species and Short-Pulsed Laser Irradiation","authors":"Sascha Chur*,&nbsp;Lennart Kulik,&nbsp;Volker Schulz-von der Gathen,&nbsp;Marc Böke and Judith Golda,&nbsp;","doi":"10.1021/acsomega.3c10033","DOIUrl":null,"url":null,"abstract":"<p >Catalysts are critical components for chemical reactions in industrial applications. They are able to optimize selectivity, efficiency, and reaction rates, thus enabling more environmentally friendly processes. This work presents a novel approach to catalyst functionalization for the CO<sub>2</sub> reduction reaction by combining the reactive species of an atmospheric pressure plasma jet with the electric fields and energy input of a laser. This leads to both a nanoscale structuring as well as a controllable chemical composition of the surface, which are important parameters for optimizing catalyst performance. The treatment is conducted on thin copper layers deposited by high power pulsed magnetron sputtering on silicon wafers. Because atomic oxygen plays a key role in oxidizing copper, two photon absorption fluorescence is used to investigate the atomic oxygen density in the interaction zone of the COST plasma jet and a copper surface. The used atmospheric pressure plasma jet provides an atomic oxygen density at the surface in a distance of 8 mm to the jet nozzle of approximately <i></i><math><mn>2</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>21</mn></mrow></msup><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac></math> or a flux of <i></i><math><mn>2</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>23</mn></mrow></msup><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>s</mi></mrow></mfrac></math>. Pulsed laser-induced dewetting is used to form nanoparticles from the deposited copper layer to enhance catalytic performance. Varying the layer thickness allows control of the size of the particles. A gas flow directed on the sample during the combined treatment disturbs the particle formation. This can be prevented by increasing the laser energy to compensate for the cooling effect of the gas flow. Investigating the surface using X-ray photoemission spectroscopy reveals that the untreated copper layer surface consists mostly of metallic copper and Cu(I) oxide. Irradiating the sample only with the laser did not change the composition. The combination of plasma and laser treatment is able to produce Cu(II) species such as CuO, whose concentration increases with treatment time. The presented process allows the tuning of the ratio of C<sub>2</sub>O/CuO, which is an interesting parameter for further studies on copper catalyst performance.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.3c10033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.3c10033","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Catalysts are critical components for chemical reactions in industrial applications. They are able to optimize selectivity, efficiency, and reaction rates, thus enabling more environmentally friendly processes. This work presents a novel approach to catalyst functionalization for the CO2 reduction reaction by combining the reactive species of an atmospheric pressure plasma jet with the electric fields and energy input of a laser. This leads to both a nanoscale structuring as well as a controllable chemical composition of the surface, which are important parameters for optimizing catalyst performance. The treatment is conducted on thin copper layers deposited by high power pulsed magnetron sputtering on silicon wafers. Because atomic oxygen plays a key role in oxidizing copper, two photon absorption fluorescence is used to investigate the atomic oxygen density in the interaction zone of the COST plasma jet and a copper surface. The used atmospheric pressure plasma jet provides an atomic oxygen density at the surface in a distance of 8 mm to the jet nozzle of approximately 2×10211m3 or a flux of 2×10231m2s. Pulsed laser-induced dewetting is used to form nanoparticles from the deposited copper layer to enhance catalytic performance. Varying the layer thickness allows control of the size of the particles. A gas flow directed on the sample during the combined treatment disturbs the particle formation. This can be prevented by increasing the laser energy to compensate for the cooling effect of the gas flow. Investigating the surface using X-ray photoemission spectroscopy reveals that the untreated copper layer surface consists mostly of metallic copper and Cu(I) oxide. Irradiating the sample only with the laser did not change the composition. The combination of plasma and laser treatment is able to produce Cu(II) species such as CuO, whose concentration increases with treatment time. The presented process allows the tuning of the ratio of C2O/CuO, which is an interesting parameter for further studies on copper catalyst performance.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微等离子体产生的活性物质和短脉冲激光照射激发的自组织亚微米表面结构
催化剂是工业应用中化学反应的关键部件。催化剂能够优化选择性、效率和反应速率,从而实现更环保的工艺。这项研究提出了一种新的催化剂功能化方法,通过将大气压等离子体喷射的反应物与激光的电场和能量输入相结合,对二氧化碳还原反应进行催化剂功能化。这样既能形成纳米级结构,又能控制表面的化学成分,而这些都是优化催化剂性能的重要参数。处理是在硅晶片上通过高功率脉冲磁控溅射沉积的薄铜层上进行的。由于原子氧在铜的氧化过程中起着关键作用,因此采用双光子吸收荧光法来研究 COST 等离子体射流与铜表面相互作用区的原子氧密度。所使用的常压等离子体射流在距离射流喷嘴 8 毫米处的表面提供的原子氧密度约为 2×10211m32×10211m32×10211m3 或通量为 2×10231m2s2×10231m2s2×10231m2s。利用脉冲激光诱导露化技术使沉积铜层形成纳米颗粒,从而提高催化性能。改变铜层厚度可以控制颗粒的大小。在组合处理过程中,样品上的气流会干扰颗粒的形成。通过增加激光能量来补偿气流的冷却效果,可以避免这种情况的发生。利用 X 射线光发射光谱对表面进行的研究表明,未经处理的铜层表面主要由金属铜和氧化铜(I)组成。仅用激光辐照样品并没有改变其成分。等离子体和激光处理相结合能够产生 Cu(II) 物种,如 CuO,其浓度随处理时间的延长而增加。所介绍的工艺可以调整 C2O/CuO 的比例,这是进一步研究铜催化剂性能的一个有趣参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Development of a 3D Printing-Enabled Cost-Effective Multimodal Raman Probe with High Signal-to-noise Ratio Raman Spectrum Measurements Affordable Two-Dimensional Layered Cd(II) Coordination Polymer: High-Performance Pseudocapacitor Electrode Behavior Comprehensive Exploration of Bromophenol Derivatives: Promising Antibacterial Agents against SA and MRSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1