Chirality transfer induced circularly polarized luminescence of achiral dye molecules by plasmonic nanohelicoid

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-06-27 DOI:10.1007/s12274-024-6781-4
Han Gao, ChunLian Zhan, Tianqi Zhao, Jianzhong Zheng
{"title":"Chirality transfer induced circularly polarized luminescence of achiral dye molecules by plasmonic nanohelicoid","authors":"Han Gao, ChunLian Zhan, Tianqi Zhao, Jianzhong Zheng","doi":"10.1007/s12274-024-6781-4","DOIUrl":null,"url":null,"abstract":"<p>Optical materials with circularly polarized luminescence (CPL) features have attracted a growing interest due to their crucial role in biological sensing, display, spintronics, information storage, and so forth. However, CPL emissions in hybrid nanoparticle systems, in particular, chirality transfer induced CPL from chiral plasmonic nanoparticles, have rarely been explored due to a lack of effective bottom-up synthesis method. Herein, we creatively take advantage of the newly introduced chiral plasmonic nanoparticles-gold nanohelicoid (GNH) to excite the CPL of achiral Rhodamine 6G (R6G). The fabricated GNH@R6G-SiO<sub>2</sub> shows obvious CPL signals with ∣<i>g</i><sub>lum</sub>∣ up to 0.014. Compared with the single GNH, the photoluminescence (PL) dissymmetry factor of the single GNH@R6G-SiO<sub>2</sub> is similar, but with 25 folds higher PL intensities under different circular polarization. Our research not only offers an effective and feasible method to fabricate single-particle level CPL-active materials, but also provides guidelines on how to regulate the CPL of achiral luminophores from chiral plasmonic nanostructures, thereby enlarging the category and quantity of CPL-active materials that can be applied for photonic technologies and visualization biosensing, especially some intracellular chirality related detection.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6781-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optical materials with circularly polarized luminescence (CPL) features have attracted a growing interest due to their crucial role in biological sensing, display, spintronics, information storage, and so forth. However, CPL emissions in hybrid nanoparticle systems, in particular, chirality transfer induced CPL from chiral plasmonic nanoparticles, have rarely been explored due to a lack of effective bottom-up synthesis method. Herein, we creatively take advantage of the newly introduced chiral plasmonic nanoparticles-gold nanohelicoid (GNH) to excite the CPL of achiral Rhodamine 6G (R6G). The fabricated GNH@R6G-SiO2 shows obvious CPL signals with ∣glum∣ up to 0.014. Compared with the single GNH, the photoluminescence (PL) dissymmetry factor of the single GNH@R6G-SiO2 is similar, but with 25 folds higher PL intensities under different circular polarization. Our research not only offers an effective and feasible method to fabricate single-particle level CPL-active materials, but also provides guidelines on how to regulate the CPL of achiral luminophores from chiral plasmonic nanostructures, thereby enlarging the category and quantity of CPL-active materials that can be applied for photonic technologies and visualization biosensing, especially some intracellular chirality related detection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非手性染料分子的手性转移诱导的等离子体纳米形核圆偏振发光
具有圆偏振发光(CPL)特性的光学材料在生物传感、显示、自旋电子学、信息存储等领域发挥着重要作用,因此受到越来越多的关注。然而,由于缺乏有效的自下而上的合成方法,人们很少探索混合纳米粒子系统中的偏振光发射,特别是手性质子纳米粒子的手性转移诱导的偏振光。在本文中,我们创造性地利用新引入的手性质子纳米粒子--纳米金螺旋(GNH)来激发非手性罗丹明6G(R6G)的CPL。制备的 GNH@R6G-SiO2 显示出明显的 CPL 信号,∣glum∣达 0.014。与单个 GNH 相比,单个 GNH@R6G-SiO2 的光致发光(PL)不对称因子相似,但在不同圆极化条件下的 PL 强度高出 25 倍。我们的研究不仅为制备单颗粒级CPL活性材料提供了有效可行的方法,而且为如何利用手性质子纳米结构调控非手性发光体的CPL提供了指导,从而扩大了CPL活性材料的种类和数量,使其可以应用于光子技术和可视化生物传感,特别是一些与细胞内手性相关的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
Experimental and theoretical investigation of sulfur-doped g-C3N4 nanosheets/FeCo2O4 nanorods S-scheme heterojunction for photocatalytic H2 evolution Multifunctional MXene/rGO aerogels loaded with Co/MnO nanocomposites for enhanced electromagnetic wave absorption, thermal insulation and pressure sensing Giant piezotronic effect in ferroelectric field effect transistor Competitive intermetallics formation in Pd-Zn-Cd system via seeded growth from ultra-thin Pd nanosheets for electrocatalytic ethanol oxidation reaction Photo-controllable antifouling hydrogels embedded with AgNPs coated spiropyran functionalized mesoporous silica for long-term antibacterial activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1