Marie Kulossa, Reinhard Oertel, Anna K. Hundsdoerfer
{"title":"Tigliane metabolites in Hyles frass after feeding experiments with TPA and Euphorbia cyparissias","authors":"Marie Kulossa, Reinhard Oertel, Anna K. Hundsdoerfer","doi":"10.1007/s00049-024-00404-7","DOIUrl":null,"url":null,"abstract":"<div><p>Within the genus <i>Hyles, Euphorbia</i> feeding appears to have evolved twice independently, in <i>H. euphorbiae</i> but also in <i>H. nicaea</i>, a species which had not been studied for its detoxification processes before. <i>Euphorbia</i> is known to contain toxic secondary metabolites, including diterpene esters, preventing most herbivores from feeding on them. We investigated the metabolisation of the standard phorbol ester Phorbol 12-myristate 13-acetate (TPA) and the diterpenes contained in <i>Euphorbia cyparissias</i> by the two species <i>Hyles euphorbiae</i> and <i>Hyles nicaea</i> (subspecies <i>nicaea</i>). For the first time, we report (1) The gut disposition of <i>Hyles n. nicaea</i> for this standard phorbol ester, which is commonly used in cancer and tumour research and (2) The disposition of the food plant tiglinaes of <i>Euphorbia cyparissias</i> after gut passage in both species and (3) Tigliane metabolites in the frass of TPA and of <i>E. cyparissias</i> feeding larvae. For both species around 5–25% of the TPA dose was recovered in the frass of the larvae, along with the metabolites phorbol and phorbol-13-acetate in very small amounts and traces. While the amounts of phorbol found did not differ much between the species frass, phorbol-13-acetate could be found in higher amounts in <i>Hyles n. nicaea</i> frass, indicating a difference in metabolisation. Moreover, enzymatic hydrolysis of TPA to phorbol-13-acetate and phorbol are postulated not to be the main metabolisation pathway, seeing that the amounts found only represent a small fraction of the TPA dose consumed.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 3","pages":"95 - 104"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-024-00404-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-024-00404-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Within the genus Hyles, Euphorbia feeding appears to have evolved twice independently, in H. euphorbiae but also in H. nicaea, a species which had not been studied for its detoxification processes before. Euphorbia is known to contain toxic secondary metabolites, including diterpene esters, preventing most herbivores from feeding on them. We investigated the metabolisation of the standard phorbol ester Phorbol 12-myristate 13-acetate (TPA) and the diterpenes contained in Euphorbia cyparissias by the two species Hyles euphorbiae and Hyles nicaea (subspecies nicaea). For the first time, we report (1) The gut disposition of Hyles n. nicaea for this standard phorbol ester, which is commonly used in cancer and tumour research and (2) The disposition of the food plant tiglinaes of Euphorbia cyparissias after gut passage in both species and (3) Tigliane metabolites in the frass of TPA and of E. cyparissias feeding larvae. For both species around 5–25% of the TPA dose was recovered in the frass of the larvae, along with the metabolites phorbol and phorbol-13-acetate in very small amounts and traces. While the amounts of phorbol found did not differ much between the species frass, phorbol-13-acetate could be found in higher amounts in Hyles n. nicaea frass, indicating a difference in metabolisation. Moreover, enzymatic hydrolysis of TPA to phorbol-13-acetate and phorbol are postulated not to be the main metabolisation pathway, seeing that the amounts found only represent a small fraction of the TPA dose consumed.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.