Power Supply System of a Tethered Unmanned Aerial Vehicle

IF 0.4 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Instruments and Experimental Techniques Pub Date : 2024-06-28 DOI:10.1134/S0020441224700064
E. Yu. Burkin, V. V. Sviridov, A. A. Bombizov
{"title":"Power Supply System of a Tethered Unmanned Aerial Vehicle","authors":"E. Yu. Burkin,&nbsp;V. V. Sviridov,&nbsp;A. A. Bombizov","doi":"10.1134/S0020441224700064","DOIUrl":null,"url":null,"abstract":"<p>A power supply system for an unmanned aerial vehicle (UAV) based on a cable connection with a primary source of electrical energy located on the earth’s surface is described. The ground power source from a standard three-phase network generates a galvanically isolated, constant output voltage that varies in the range of 350–435 V with an average electric power of up to 10 kW. A circuit based on a step-down type pulse current stabilizer with a subsequent link of a current inverter, a matching transformer, and a rectifier was used. The voltage of the ground power source is fed through the cable-rope to the UAV. The UAV power supply lowers the output voltage to 48 ± 2 V, with an output current of up to 135 A. Experimental data on the operation of the system on a load equivalent and UAVs are presented.</p>","PeriodicalId":587,"journal":{"name":"Instruments and Experimental Techniques","volume":"67 1","pages":"41 - 47"},"PeriodicalIF":0.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments and Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0020441224700064","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A power supply system for an unmanned aerial vehicle (UAV) based on a cable connection with a primary source of electrical energy located on the earth’s surface is described. The ground power source from a standard three-phase network generates a galvanically isolated, constant output voltage that varies in the range of 350–435 V with an average electric power of up to 10 kW. A circuit based on a step-down type pulse current stabilizer with a subsequent link of a current inverter, a matching transformer, and a rectifier was used. The voltage of the ground power source is fed through the cable-rope to the UAV. The UAV power supply lowers the output voltage to 48 ± 2 V, with an output current of up to 135 A. Experimental data on the operation of the system on a load equivalent and UAVs are presented.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系留式无人飞行器的供电系统
摘要 描述了无人驾驶飞行器(UAV)的供电系统,该系统基于与位于地球表面的主要电能源的电缆连接。来自标准三相网络的地面电源可产生电隔离的恒定输出电压,其变化范围为 350-435 V,平均电力功率可达 10 kW。该电路以降压型脉冲电流稳定器为基础,随后连接电流逆变器、匹配变压器和整流器。地面电源的电压通过电缆线馈送至无人机。无人机电源将输出电压降至 48±2 V,输出电流高达 135 A。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Instruments and Experimental Techniques
Instruments and Experimental Techniques 工程技术-工程:综合
CiteScore
1.20
自引率
33.30%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Instruments and Experimental Techniques is an international peer reviewed journal that publishes reviews describing advanced methods for physical measurements and techniques and original articles that present techniques for physical measurements, principles of operation, design, methods of application, and analysis of the operation of physical instruments used in all fields of experimental physics and when conducting measurements using physical methods and instruments in astronomy, natural sciences, chemistry, biology, medicine, and ecology.
期刊最新文献
Measurement of Time Resolution of Scintillation Detectors with EQR-15 Silicon Photodetectors for the Time-of-Flight Neutron Detector of the BM@N Experiment Development of a High Granular TOF Neutron Detector for the BM@N Experiment A Scintillation Amplitude−Coordinate Spectrometer Broadband Receiver for MRI The Improvement of Temperature Sensitivity by Eliminating the Thermal Stress at the Interface of Fiber Bragg Gratings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1