γ-Ray Detection with the TAIGA-IACT Installation in the Stereo Mode of Observation

IF 0.4 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Instruments and Experimental Techniques Pub Date : 2024-06-28 DOI:10.1134/s0020441224700106
P. A. Volchugov, I. I. Astapov, P. A. Bez’’yazykov, E. A. Bonvech, A. N. Borodin, N. M. Budnev, A. V. Bulan, A. Vaidyanatan, N. V. Volkov, D. M. Voronin, A. R. Gafarov, E. O. Gres’, O. A. Gres’, T. I. Gres’, O. G. Grishin, A. Yu. Garmash, V. M. Grebenyuk, A. A. Grinyuk, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. D. Ivanova, A. L. Ivanova, M. A. Ilyushin, N. N. Kalmykov, V. V. Kindin, S. N. Kiryukhin, R. P. Kokoulin, N. I. Kolosov, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuz’michev, A. K’yavassa, A. A. Lagutin, M. V. Lavrova, Yu. E. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, S. D. Malakhov, R. R. Mirgazov, R. D. Monkhoev, E. A. Okuneva, E. A. Osipova, A. D. Panov, A. L. Pakhorukov, A. Pan, L. V. Pan’kov, A. A. Petrukhin, D. A. Podgrudkov, E. G. Popova, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, A. Yu. Razumov, R. I. Raikin, G. I. Rubtsov, E. V. Ryabov, V. S. Samoliga, I. Satyshev, L. G. Sve..
{"title":"γ-Ray Detection with the TAIGA-IACT Installation in the Stereo Mode of Observation","authors":"P. A. Volchugov, I. I. Astapov, P. A. Bez’’yazykov, E. A. Bonvech, A. N. Borodin, N. M. Budnev, A. V. Bulan, A. Vaidyanatan, N. V. Volkov, D. M. Voronin, A. R. Gafarov, E. O. Gres’, O. A. Gres’, T. I. Gres’, O. G. Grishin, A. Yu. Garmash, V. M. Grebenyuk, A. A. Grinyuk, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. D. Ivanova, A. L. Ivanova, M. A. Ilyushin, N. N. Kalmykov, V. V. Kindin, S. N. Kiryukhin, R. P. Kokoulin, N. I. Kolosov, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuz’michev, A. K’yavassa, A. A. Lagutin, M. V. Lavrova, Yu. E. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, S. D. Malakhov, R. R. Mirgazov, R. D. Monkhoev, E. A. Okuneva, E. A. Osipova, A. D. Panov, A. L. Pakhorukov, A. Pan, L. V. Pan’kov, A. A. Petrukhin, D. A. Podgrudkov, E. G. Popova, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, A. Yu. Razumov, R. I. Raikin, G. I. Rubtsov, E. V. Ryabov, V. S. Samoliga, I. Satyshev, L. G. Sve..","doi":"10.1134/s0020441224700106","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract—</h3><p>The paper is devoted to the modeling and analysis of data detected by the TAIGA-IACT installation in the stereo mode. Five Imaging Atmospheric Cherenkov Telescopes (IACT) with a viewing angle of 9.6° are expected to be included in the installation. Today there are three telescopes spaced far apart (from 320 to 500 m) in the installation. The effective area of the installation is as large as 0.6 km<sup>2</sup>; therefore, it is possible to conduct statistically significant measurements of weak γ-ray sources in the energy range above 10 TeV over a reasonable observation time (300–400 h). The Monte Carlo procedure for simulating the hadrons and γ-rays detected by the telescopes is described as is the procedure for reconstructing the parameters of extensive air showers, such as the arrival direction of an event, the axis position, the depth of the maximum of shower development (<i>X</i><sub>max</sub>), and the primary-particle energy. In order to solve the problem of γ-hadron separation, the criteria for selecting γ-rays detected in the stereo mode have been optimized and the effective area of the installation has been calculated.</p>","PeriodicalId":587,"journal":{"name":"Instruments and Experimental Techniques","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments and Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0020441224700106","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract—

The paper is devoted to the modeling and analysis of data detected by the TAIGA-IACT installation in the stereo mode. Five Imaging Atmospheric Cherenkov Telescopes (IACT) with a viewing angle of 9.6° are expected to be included in the installation. Today there are three telescopes spaced far apart (from 320 to 500 m) in the installation. The effective area of the installation is as large as 0.6 km2; therefore, it is possible to conduct statistically significant measurements of weak γ-ray sources in the energy range above 10 TeV over a reasonable observation time (300–400 h). The Monte Carlo procedure for simulating the hadrons and γ-rays detected by the telescopes is described as is the procedure for reconstructing the parameters of extensive air showers, such as the arrival direction of an event, the axis position, the depth of the maximum of shower development (Xmax), and the primary-particle energy. In order to solve the problem of γ-hadron separation, the criteria for selecting γ-rays detected in the stereo mode have been optimized and the effective area of the installation has been calculated.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在立体观测模式下利用 TAIGA-IACT 装置进行 γ 射线探测
摘要--本文致力于对 TAIGA-IACT 装置在立体模式下探测到的数据进行建模和分析。该装置预计包括五台视角为 9.6°的成像大气切伦科夫望远镜(IACT)。目前,该装置中的三台望远镜相距甚远(从 320 米到 500 米)。该装置的有效面积达 0.6 平方公里,因此可以在合理的观测时间内(300-400 小时)对 10 TeV 以上能量范围的弱γ射线源进行有统计意义的测量。描述了模拟望远镜探测到的强子和 γ 射线的蒙特卡洛程序,以及重建大范围空气阵列参数的程序,如事件的到达方向、轴位置、阵列发展最大深度(Xmax)和主粒子能量。为了解决γ-哈德子分离问题,优化了选择以立体模式探测到的γ射线的标准,并计算了装置的有效面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Instruments and Experimental Techniques
Instruments and Experimental Techniques 工程技术-工程:综合
CiteScore
1.20
自引率
33.30%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Instruments and Experimental Techniques is an international peer reviewed journal that publishes reviews describing advanced methods for physical measurements and techniques and original articles that present techniques for physical measurements, principles of operation, design, methods of application, and analysis of the operation of physical instruments used in all fields of experimental physics and when conducting measurements using physical methods and instruments in astronomy, natural sciences, chemistry, biology, medicine, and ecology.
期刊最新文献
Investigation of the Thermal Outgassing from P43 Phosphor and Aerogel for Use in the Vacuum System of the SRF SKIF An Active Vibration Isolator for the Space Optical Clock Application of Glass Capillaries with an Outer Diameter of Less Than One Micrometer in a Manipulator Made Based on an Atomic Force Microscope Comparison of Phase Extraction Methods on the Example of the PN-3 Microwave Interferometer Penning Ion Source in Inertial Electrostatic Confinement Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1