Fluorine-Free Superhydrophobic Petal-like SiO2 Nanostructure Supported on Cotton for Oil–Water Separation

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-27 DOI:10.1021/acsanm.4c01888
Zixiu Chen, Baojie Yang, Lingling Feng, Xiaoyan Xu, Haiyang Luo, Wei Li*, Keliang Wang* and Hui Qiao*, 
{"title":"Fluorine-Free Superhydrophobic Petal-like SiO2 Nanostructure Supported on Cotton for Oil–Water Separation","authors":"Zixiu Chen,&nbsp;Baojie Yang,&nbsp;Lingling Feng,&nbsp;Xiaoyan Xu,&nbsp;Haiyang Luo,&nbsp;Wei Li*,&nbsp;Keliang Wang* and Hui Qiao*,&nbsp;","doi":"10.1021/acsanm.4c01888","DOIUrl":null,"url":null,"abstract":"<p >The practical applications of superhydrophobic fabrics face challenges such as inadequate durability and dependence on toxic fluorine-containing reagents. In this work, a robust, multipurpose, and fluoride-free superhydrophobic fabric is engineered. The fabrication process involves the preparation of a petal-like nano-SiO<sub>2</sub> (PNS) using a two-phase layering approach. The pleated structure of PNS contributes to excellent roughness on the fabric surface, while the strong adhesion of polydopamine (PDA) serves as an intermediate layer, enhancing the durability and stability of the hydrophobic fabric. Additionally, the surface energy of cotton is reduced by polydimethylsiloxane (PDMS) coating. The resulting fabric coated with PDMS/PNS–PDA exhibits an exceptional water contact angle of 166.3°, a remarkably low sliding angle of only 3.6°, and excellent mechanical stability that can withstand 50 washing cycles and 30 Martindale abrasion cycles. Moreover, the superhydrophobic fabric demonstrates prominent antifouling and self-cleaning properties along with oil–water separation efficiency (&gt;98%), water-in-oil emulsion (96%), and reusability for oil–water separation. Overall, the engineered superhydrophobic fabric shows promising potential in oil–water separation and the development of functional textiles.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c01888","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The practical applications of superhydrophobic fabrics face challenges such as inadequate durability and dependence on toxic fluorine-containing reagents. In this work, a robust, multipurpose, and fluoride-free superhydrophobic fabric is engineered. The fabrication process involves the preparation of a petal-like nano-SiO2 (PNS) using a two-phase layering approach. The pleated structure of PNS contributes to excellent roughness on the fabric surface, while the strong adhesion of polydopamine (PDA) serves as an intermediate layer, enhancing the durability and stability of the hydrophobic fabric. Additionally, the surface energy of cotton is reduced by polydimethylsiloxane (PDMS) coating. The resulting fabric coated with PDMS/PNS–PDA exhibits an exceptional water contact angle of 166.3°, a remarkably low sliding angle of only 3.6°, and excellent mechanical stability that can withstand 50 washing cycles and 30 Martindale abrasion cycles. Moreover, the superhydrophobic fabric demonstrates prominent antifouling and self-cleaning properties along with oil–water separation efficiency (>98%), water-in-oil emulsion (96%), and reusability for oil–water separation. Overall, the engineered superhydrophobic fabric shows promising potential in oil–water separation and the development of functional textiles.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
棉花上支持的无氟超疏水花瓣状 SiO2 纳米结构用于油水分离
超疏水织物的实际应用面临着耐久性不足和依赖有毒含氟试剂等挑战。在这项工作中,我们设计了一种坚固耐用、多用途、无氟的超疏水织物。制造过程包括采用两相分层法制备花瓣状纳米二氧化硅(PNS)。PNS 的褶皱结构使织物表面具有极佳的粗糙度,而作为中间层的聚多巴胺(PDA)具有很强的附着力,可增强疏水织物的耐久性和稳定性。此外,聚二甲基硅氧烷(PDMS)涂层降低了棉的表面能。涂有 PDMS/PNS-PDA 的织物具有 166.3° 的超高水接触角、仅为 3.6° 的超低滑动角和出色的机械稳定性,可经受 50 次水洗和 30 次 Martindale 磨损。此外,这种超疏水织物还具有突出的防污和自清洁性能,以及油水分离效率(98%)、油包水乳化率(96%)和可重复使用的油水分离性能。总之,工程超疏水性织物在油水分离和功能纺织品开发方面展现出了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Room-Temperature Synthesis of Au@AuCu Alloyed Nanorods in Aqueous Solutions for High Catalytic Activity and Enhanced Stability Achieving High Quantum Efficiency in Cs3Cu2I5 Nanocrystals by the A-Site Ion Substitution for Flexible Blue Electroluminescence Devices and Enhanced Photovoltaic Cells Manganese and Cobalt Heterostructures in Carbon Aerogels for the Improved Electrochemical Performance of Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1