Role of Charge Accumulation in MoS2/Graphitic Carbon Nitride Nanostructures for Photocatalytic N2 Fixation

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-07-02 DOI:10.1021/acsanm.4c02248
Gang Dong*, Tianxiang Zhou, Chengzhi Zhang, Yongchao Wang, Yang Wang*, Wei Shi, Xiaoli Su, Tao Zeng and Yunxia Chen*, 
{"title":"Role of Charge Accumulation in MoS2/Graphitic Carbon Nitride Nanostructures for Photocatalytic N2 Fixation","authors":"Gang Dong*,&nbsp;Tianxiang Zhou,&nbsp;Chengzhi Zhang,&nbsp;Yongchao Wang,&nbsp;Yang Wang*,&nbsp;Wei Shi,&nbsp;Xiaoli Su,&nbsp;Tao Zeng and Yunxia Chen*,&nbsp;","doi":"10.1021/acsanm.4c02248","DOIUrl":null,"url":null,"abstract":"<p >Constructing a heterojunction is an effective way to overcome the handicaps of single-component photocatalysts for the photocatalytic N<sub>2</sub> reduction reaction (PNRR). However, the fundamental photophysical processes between two semiconductors with different nanostructures are still unclear. Drawing upon a combination of experimental observations and theoretical calculations, a series of binary nanohybrid photocatalysts of MoS<sub>2</sub> (nanodot, monolayer, and few nanolayers) and carbon nitride are systematically evaluated as potential N<sub>2</sub> reduction reaction photocatalysts. Owing to the atomically well-defined interfacial interaction between MoS<sub>2</sub> and graphitic carbon nitride (GCN), charge accumulates in MoS<sub>2</sub>. Meanwhile, the electron density of MoS<sub>2</sub> increases with the reduction of nanosize, thereby facilitating N<sub>2</sub> adsorption on the Mo-edge and boosting the potential-determining step of the desorption of the NH<sub>3</sub> molecule. Simultaneously, the MoS<sub>2</sub> nanodot anchored on GCN manifests a compelling photothermal effect upon solar light irradiation and raises the temperature of the compound in situ, leading to efficient charge transfer and thereby enhancing the photocatalytic performance. Encouragingly, the final product reaches a high ammonia synthesis rate of 2.71 mmol h<sup>–1</sup> g<sup>–1</sup> at ambient conditions and an apparent quantum of 0.62% at 430 nm. Establishing the relationship between the nano-, electronic structure and PNRR performance of MoS<sub>2</sub>/GCN heterojunction materials provides valuable insights for their potential application in PNRR technology.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c02248","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing a heterojunction is an effective way to overcome the handicaps of single-component photocatalysts for the photocatalytic N2 reduction reaction (PNRR). However, the fundamental photophysical processes between two semiconductors with different nanostructures are still unclear. Drawing upon a combination of experimental observations and theoretical calculations, a series of binary nanohybrid photocatalysts of MoS2 (nanodot, monolayer, and few nanolayers) and carbon nitride are systematically evaluated as potential N2 reduction reaction photocatalysts. Owing to the atomically well-defined interfacial interaction between MoS2 and graphitic carbon nitride (GCN), charge accumulates in MoS2. Meanwhile, the electron density of MoS2 increases with the reduction of nanosize, thereby facilitating N2 adsorption on the Mo-edge and boosting the potential-determining step of the desorption of the NH3 molecule. Simultaneously, the MoS2 nanodot anchored on GCN manifests a compelling photothermal effect upon solar light irradiation and raises the temperature of the compound in situ, leading to efficient charge transfer and thereby enhancing the photocatalytic performance. Encouragingly, the final product reaches a high ammonia synthesis rate of 2.71 mmol h–1 g–1 at ambient conditions and an apparent quantum of 0.62% at 430 nm. Establishing the relationship between the nano-, electronic structure and PNRR performance of MoS2/GCN heterojunction materials provides valuable insights for their potential application in PNRR technology.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光催化固定氮气的 MoS2/氮化石墨碳纳米结构中电荷积累的作用
在光催化 N2 还原反应(PNRR)中,构建异质结是克服单组分光催化剂缺陷的有效方法。然而,两种不同纳米结构的半导体之间的基本光物理过程仍不清楚。结合实验观察和理论计算,我们系统地评估了一系列由 MoS2(纳米点、单层和少数纳米层)和氮化碳组成的二元纳米杂化光催化剂,将其作为潜在的 N2 还原反应光催化剂。由于 MoS2 和石墨氮化碳(GCN)之间存在原子定义明确的界面相互作用,电荷在 MoS2 中聚集。同时,MoS2 的电子密度随着纳米尺寸的减小而增加,从而促进了 N2 在 Mo-edge 上的吸附,并提高了 NH3 分子解吸的电位决定步骤。同时,锚定在 GCN 上的 MoS2 纳米点在太阳光照射下会产生强烈的光热效应,并在原位提高化合物的温度,从而实现高效的电荷转移,进而提高光催化性能。令人鼓舞的是,最终产品在环境条件下的氨合成率高达 2.71 mmol h-1 g-1,在 430 纳米波长下的表观量子为 0.62%。建立 MoS2/GCN 异质结材料的纳米、电子结构与 PNRR 性能之间的关系为其在 PNRR 技术中的潜在应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Room-Temperature Synthesis of Au@AuCu Alloyed Nanorods in Aqueous Solutions for High Catalytic Activity and Enhanced Stability Achieving High Quantum Efficiency in Cs3Cu2I5 Nanocrystals by the A-Site Ion Substitution for Flexible Blue Electroluminescence Devices and Enhanced Photovoltaic Cells Manganese and Cobalt Heterostructures in Carbon Aerogels for the Improved Electrochemical Performance of Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1