Hierarchically Ordered Grid-Type Silver Nanowire Microelectrodes via Direct Ink Writing

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-28 DOI:10.1021/acsanm.4c02614
Xiangyi Kong, Hongyu Chen, Hejian Li, Liancong Yue, Min Gong, Xiang Lin, Meiqin Zhang, Liang Zhang, Dongrui Wang
{"title":"Hierarchically Ordered Grid-Type Silver Nanowire Microelectrodes via Direct Ink Writing","authors":"Xiangyi Kong, Hongyu Chen, Hejian Li, Liancong Yue, Min Gong, Xiang Lin, Meiqin Zhang, Liang Zhang, Dongrui Wang","doi":"10.1021/acsanm.4c02614","DOIUrl":null,"url":null,"abstract":"Flexible transparent electrodes (FTEs) constructed from silver nanowires (AgNWs) have potential applications in a wide range of flexible optoelectronic devices. However, the uncontrollable alignment of AgNWs makes it challenging to manufacture high-performance and cost-effective AgNW-based FTEs. Herein, we present a direct-ink-writing technique for patterning AgNWs into high-resolution (line width as small as 33 μm), ultrathin (line height as small as 57 nm), and large-area (as large as 220 × 160 mm<sup>2</sup>) orthogonal grids in a single writing pass. The hierarchically ordered (HO) AgNW grids exhibit superior properties with a sheet resistance of 25.3 Ω/sq, a visible-light transmittance (<i>T</i>) of 98.6%, a high figure of merit of 1053, and a haze factor of 0.46% at an extremely low AgNW dosage of 2.1 μg/cm<sup>2</sup>. The wearable transparent heaters utilizing the printed HO AgNW grids exhibit excellent Joule heating performance. This work showcases a strategy for fabricating cost-effective AgNW-based FTEs that can be used to replace indium–tin oxide in large-scale applications.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.4c02614","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible transparent electrodes (FTEs) constructed from silver nanowires (AgNWs) have potential applications in a wide range of flexible optoelectronic devices. However, the uncontrollable alignment of AgNWs makes it challenging to manufacture high-performance and cost-effective AgNW-based FTEs. Herein, we present a direct-ink-writing technique for patterning AgNWs into high-resolution (line width as small as 33 μm), ultrathin (line height as small as 57 nm), and large-area (as large as 220 × 160 mm2) orthogonal grids in a single writing pass. The hierarchically ordered (HO) AgNW grids exhibit superior properties with a sheet resistance of 25.3 Ω/sq, a visible-light transmittance (T) of 98.6%, a high figure of merit of 1053, and a haze factor of 0.46% at an extremely low AgNW dosage of 2.1 μg/cm2. The wearable transparent heaters utilizing the printed HO AgNW grids exhibit excellent Joule heating performance. This work showcases a strategy for fabricating cost-effective AgNW-based FTEs that can be used to replace indium–tin oxide in large-scale applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过直接墨水写入技术实现分层有序的网格型银纳米线微电极
由银纳米线(AgNWs)构成的柔性透明电极(FTEs)在各种柔性光电设备中具有潜在的应用价值。然而,由于银纳米线的排列不可控,因此制造基于银纳米线的高性能、高性价比的柔性透明电极(FTE)极具挑战性。在此,我们提出了一种直接墨水写入技术,可在一次写入过程中将 AgNW 图形化为高分辨率(线宽小至 33 μm)、超薄(线高小至 57 nm)和大面积(大至 220 × 160 mm2)的正交网格。分层有序(HO)AgNW 网格表现出卓越的性能,在 AgNW 用量极低(2.1 μg/cm2)的情况下,其薄片电阻为 25.3 Ω/sq,可见光透过率 (T) 为 98.6%,优越性高达 1053,雾度系数为 0.46%。利用印制的 HO AgNW 网格制成的可穿戴透明加热器具有出色的焦耳加热性能。这项工作展示了一种制造基于 AgNW 的高性价比 FTE 的策略,可用于在大规模应用中取代氧化铟锡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Nitrogen-Doped Porous Carbon with Staged Nanopore Formation for Capacitors Nickel-Embedded Carbon Nanostructures as Noble Metal-Free Catalysts for the Hydrogen Evolution Reaction High-Performance Ammonia Gas Sensor Based on a Catalytic Ruthenium- Gated Field-Effect Transistor Strong Metal–Support Interactions in Cu(I)-Dark TiO2 Nanoscale Photocatalysts Prepared by Pulsed Laser Ablation for Hydrogen Evolution Reaction Quantum Dots as an Active Reservoir for Longer Effective Lifetimes in GaAs Bulk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1