Ganyu Wang, Qingsong Zhang, Xiang Li, Boyu Wang, Bin Gu, Charles X. Ling
{"title":"Secure and fast asynchronous Vertical Federated Learning via cascaded hybrid optimization","authors":"Ganyu Wang, Qingsong Zhang, Xiang Li, Boyu Wang, Bin Gu, Charles X. Ling","doi":"10.1007/s10994-024-06541-y","DOIUrl":null,"url":null,"abstract":"<p>Vertical Federated Learning (VFL) is gaining increasing attention due to its ability to enable multiple parties to collaboratively train a privacy-preserving model using vertically partitioned data. Recent research has highlighted the advantages of using zeroth-order optimization (ZOO) in developing practical VFL algorithms. However, a significant drawback of ZOO-based VFL is its slow convergence rate, which limits its applicability in handling large modern models. To address this issue, we propose a cascaded hybrid optimization method for VFL. In this method, the downstream models (clients) are trained using ZOO to ensure privacy and prevent the sharing of internal information. Simultaneously, the upstream model (server) is updated locally using first-order optimization, which significantly improves the convergence rate. This approach allows for the training of large models without compromising privacy and security. We theoretically prove that our VFL method achieves faster convergence compared to ZOO-based VFL because the convergence rate of our framework is not limited by the size of the server model, making it effective for training large models. Extensive experiments demonstrate that our method achieves faster convergence than ZOO-based VFL while maintaining an equivalent level of privacy protection. Additionally, we demonstrate the feasibility of training large models using our method.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"44 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06541-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Vertical Federated Learning (VFL) is gaining increasing attention due to its ability to enable multiple parties to collaboratively train a privacy-preserving model using vertically partitioned data. Recent research has highlighted the advantages of using zeroth-order optimization (ZOO) in developing practical VFL algorithms. However, a significant drawback of ZOO-based VFL is its slow convergence rate, which limits its applicability in handling large modern models. To address this issue, we propose a cascaded hybrid optimization method for VFL. In this method, the downstream models (clients) are trained using ZOO to ensure privacy and prevent the sharing of internal information. Simultaneously, the upstream model (server) is updated locally using first-order optimization, which significantly improves the convergence rate. This approach allows for the training of large models without compromising privacy and security. We theoretically prove that our VFL method achieves faster convergence compared to ZOO-based VFL because the convergence rate of our framework is not limited by the size of the server model, making it effective for training large models. Extensive experiments demonstrate that our method achieves faster convergence than ZOO-based VFL while maintaining an equivalent level of privacy protection. Additionally, we demonstrate the feasibility of training large models using our method.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.