Jaakko Heikkinen, Kristiina Lång, Henri Honkanen, Merja Myllys
{"title":"Mitigation of Greenhouse Gas Emissions by Optimizing Groundwater Level in Boreal Cultivated Peatland","authors":"Jaakko Heikkinen, Kristiina Lång, Henri Honkanen, Merja Myllys","doi":"10.1007/s13157-024-01833-4","DOIUrl":null,"url":null,"abstract":"<p>Optimizing the level of groundwater presents a viable strategy for mitigating the greenhouse gas (GHG) emissions associated with the cultivation of peatlands. This study investigated the impact of soil hydrological conditions on carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) emissions. The CO<sub>2</sub> and CH<sub>4</sub> emissions from bare soil were continuously measured using an automated chamber system throughout the growing seasons from 2021 to 2023 at a boreal cultivated peat soil site. Annual CO<sub>2</sub> emissions from soil respiration averaged to 21,600 kg ha<sup>-1</sup> (April-November) corresponding to carbon (C) loss of 5890 kg ha<sup>-1</sup>. The CO<sub>2</sub> emissions were highly temperature dependent. Lowering the groundwater level (GWL) was found to increase the CO<sub>2</sub> emissions nearly linearly. The soil functioned as a CH<sub>4</sub> sink for the majority of the growing season, and the total sink corresponded to 27 and 20 kg ha<sup>-1</sup> yr<sup>-1</sup> CO<sub>2</sub> equivalent in 2022 and 2023, respectively. The CH<sub>4</sub> emissions occurred generally when soil water content (SWC) exceeded 0.6 m<sup>3</sup> m<sup>-3</sup> and when GWL was at the depth of less than 30 cm from soil surface. For optimal climate efficiency the mitigation measures must be implemented during the mid-growing season, and the water table should be brought close to the soil surface. Potentially, this can hamper the operation of machinery on the field and reduce the harvested yield. Thus, comprehensive cost-benefit analysis is necessary before adopting a raised water table level in large-scale crop production.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s13157-024-01833-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing the level of groundwater presents a viable strategy for mitigating the greenhouse gas (GHG) emissions associated with the cultivation of peatlands. This study investigated the impact of soil hydrological conditions on carbon dioxide (CO2) and methane (CH4) emissions. The CO2 and CH4 emissions from bare soil were continuously measured using an automated chamber system throughout the growing seasons from 2021 to 2023 at a boreal cultivated peat soil site. Annual CO2 emissions from soil respiration averaged to 21,600 kg ha-1 (April-November) corresponding to carbon (C) loss of 5890 kg ha-1. The CO2 emissions were highly temperature dependent. Lowering the groundwater level (GWL) was found to increase the CO2 emissions nearly linearly. The soil functioned as a CH4 sink for the majority of the growing season, and the total sink corresponded to 27 and 20 kg ha-1 yr-1 CO2 equivalent in 2022 and 2023, respectively. The CH4 emissions occurred generally when soil water content (SWC) exceeded 0.6 m3 m-3 and when GWL was at the depth of less than 30 cm from soil surface. For optimal climate efficiency the mitigation measures must be implemented during the mid-growing season, and the water table should be brought close to the soil surface. Potentially, this can hamper the operation of machinery on the field and reduce the harvested yield. Thus, comprehensive cost-benefit analysis is necessary before adopting a raised water table level in large-scale crop production.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.