Dry‐air intrusion over India during break phases of the Indian summer monsoon in CMIP6 models

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Quarterly Journal of the Royal Meteorological Society Pub Date : 2024-06-20 DOI:10.1002/qj.4788
Rahul Singh, S. Sandeep
{"title":"Dry‐air intrusion over India during break phases of the Indian summer monsoon in CMIP6 models","authors":"Rahul Singh, S. Sandeep","doi":"10.1002/qj.4788","DOIUrl":null,"url":null,"abstract":"Episodes of dry‐air intrusion over northern India have been observed during break phases of the Indian summer monsoon (ISM). Previous investigations have provided observational evidence of a significant reservoir of unsaturated air over the northern Arabian Sea, serving as the source of this dry‐air intrusion. It was also suggested that the monsoon low‐level jet, which typically transports moisture to continental India during the active phase, instead transports dry air during the break phase of the ISM. While the existence of dry‐air intrusion is well‐documented through observations, its representation in climate models remains uncertain. It is important to enhance our understanding of the process of dry‐air advection in climate models to assess their fidelity in simulating the climate over the region. In this study, we quantify the extent of dry‐air intrusion and examine its mechanisms in simulations from the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Most CMIP6 models analysed in this study simulate the observed pattern of dry‐air advection over continental India realistically during the summer monsoon‐break phase. Some models also simulate dry‐air transport from West Asia, possibly due to an overly smoothed representation of orography. Furthermore, the majority of CMIP6 models successfully capture the intrinsic modes associated with the dry monsoon phase, as demonstrated by empirical orthogonal function analysis of low‐level zonal winds. Our analyses indicate that global climate models exhibit better skill in simulating dry processes of the monsoon compared with moist processes. These findings uncover previously underexplored aspects of the monsoon, which are essential for assessing future regional climate changes accurately.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4788","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Episodes of dry‐air intrusion over northern India have been observed during break phases of the Indian summer monsoon (ISM). Previous investigations have provided observational evidence of a significant reservoir of unsaturated air over the northern Arabian Sea, serving as the source of this dry‐air intrusion. It was also suggested that the monsoon low‐level jet, which typically transports moisture to continental India during the active phase, instead transports dry air during the break phase of the ISM. While the existence of dry‐air intrusion is well‐documented through observations, its representation in climate models remains uncertain. It is important to enhance our understanding of the process of dry‐air advection in climate models to assess their fidelity in simulating the climate over the region. In this study, we quantify the extent of dry‐air intrusion and examine its mechanisms in simulations from the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Most CMIP6 models analysed in this study simulate the observed pattern of dry‐air advection over continental India realistically during the summer monsoon‐break phase. Some models also simulate dry‐air transport from West Asia, possibly due to an overly smoothed representation of orography. Furthermore, the majority of CMIP6 models successfully capture the intrinsic modes associated with the dry monsoon phase, as demonstrated by empirical orthogonal function analysis of low‐level zonal winds. Our analyses indicate that global climate models exhibit better skill in simulating dry processes of the monsoon compared with moist processes. These findings uncover previously underexplored aspects of the monsoon, which are essential for assessing future regional climate changes accurately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CMIP6 模型中印度夏季季风间歇期印度上空的干燥空气入侵
在印度夏季季风(ISM)的间歇期,印度北部曾出现过干燥空气入侵现象。以前的调查提供了观测证据,证明阿拉伯海北部有大量不饱和空气,是这种干燥空气入侵的来源。还有人认为,季风低空喷流通常在季风活跃期向印度大陆输送水汽,而在 ISM 的间歇期则输送干燥空气。虽然干空气入侵的存在已通过观测得到充分证明,但其在气候模式中的表现仍不确定。加强对气候模式中干燥空气平流过程的了解,对评估气候模式模拟该地区气候的真实性非常重要。在本研究中,我们对耦合模式相互比较项目(CMIP6)第六阶段模拟中的干燥空气入侵程度进行了量化,并研究了其机制。本研究分析的大多数 CMIP6 模式都真实地模拟了夏季季风爆发阶段印度大陆上空观测到的干燥空气对流模式。一些模式还模拟了来自西亚的干燥空气输送,这可能是由于对地形的描述过于平滑所致。此外,大多数 CMIP6 模式成功地捕捉到了与干旱季风阶段相关的固有模式,这一点通过对低层带状风的经验正交函数分析得到了证明。我们的分析表明,与湿润过程相比,全球气候模式在模拟季风的干燥过程方面表现出更好的技能。这些发现揭示了季风以前未被充分探索的方面,这对于准确评估未来区域气候变化至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
期刊最新文献
Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts Relationship between vertical variation of cloud microphysical properties and thickness of the entrainment interfacial layer in Physics of Stratocumulus Top stratocumulus clouds Characteristics and trends of Atlantic tropical cyclones that do and do not develop from African easterly waves Teleconnection and the Antarctic response to the Indian Ocean Dipole in CMIP5 and CMIP6 models First trial for the assimilation of radiance data from MTVZA‐GY on board the new Russian satellite meteor‐M N2‐2 in the CMA‐GFS 4D‐VAR system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1