One-Dimensional Tensor Network Recovery

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED SIAM Journal on Matrix Analysis and Applications Pub Date : 2024-07-01 DOI:10.1137/23m159888x
Ziang Chen, Jianfeng Lu, Anru Zhang
{"title":"One-Dimensional Tensor Network Recovery","authors":"Ziang Chen, Jianfeng Lu, Anru Zhang","doi":"10.1137/23m159888x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1217-1244, September 2024. <br/> Abstract. We study the recovery of the underlying graphs or permutations for tensors in the tensor ring or tensor train format. Our proposed algorithms compare the matricization ranks after down-sampling, whose complexity is [math] for [math]th-order tensors. We prove that our algorithms can almost surely recover the correct graph or permutation when tensor entries can be observed without noise. We further establish the robustness of our algorithms against observational noise. The theoretical results are validated by numerical experiments.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m159888x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1217-1244, September 2024.
Abstract. We study the recovery of the underlying graphs or permutations for tensors in the tensor ring or tensor train format. Our proposed algorithms compare the matricization ranks after down-sampling, whose complexity is [math] for [math]th-order tensors. We prove that our algorithms can almost surely recover the correct graph or permutation when tensor entries can be observed without noise. We further establish the robustness of our algorithms against observational noise. The theoretical results are validated by numerical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一维张量网络恢复
SIAM 矩阵分析与应用期刊》,第 45 卷第 3 期,第 1217-1244 页,2024 年 9 月。 摘要我们研究了张量环或张量列车格式中张量的底层图或排列的恢复。我们提出的算法比较了向下采样后的矩阵化等级,对于[math]阶张量,其复杂度为[math]。我们证明,当张量条目可以无噪声观测时,我们的算法几乎肯定能恢复正确的图或排列。我们进一步确定了我们的算法对观测噪声的鲁棒性。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
期刊最新文献
On Substochastic Inverse Eigenvalue Problems with the Corresponding Eigenvector Constraints Low-Rank Plus Diagonal Approximations for Riccati-Like Matrix Differential Equations Multichannel Frequency Estimation with Constant Amplitude via Convex Structured Low-Rank Approximation Kronecker Product of Tensors and Hypergraphs: Structure and Dynamics Growth Factors of Orthogonal Matrices and Local Behavior of Gaussian Elimination with Partial and Complete Pivoting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1