Effect of Ferromagnet/Organic Semiconductor Interface Defect States on Tunnel Magnetoresistance of Hybrid Magnetic Tunnel Junctions

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Physica Status Solidi B-basic Solid State Physics Pub Date : 2024-06-21 DOI:10.1002/pssb.202400059
Yadlapalli Sujatha, Abhishek Pahuja, Debajit Deb
{"title":"Effect of Ferromagnet/Organic Semiconductor Interface Defect States on Tunnel Magnetoresistance of Hybrid Magnetic Tunnel Junctions","authors":"Yadlapalli Sujatha, Abhishek Pahuja, Debajit Deb","doi":"10.1002/pssb.202400059","DOIUrl":null,"url":null,"abstract":"Herein, analytical modeling of Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/<jats:italic>x</jats:italic>(≈1.1 nm)/Co (<jats:italic>x</jats:italic> = rubrene, C<jats:sub>60</jats:sub>, and bathocuproine (BCP)) magnetic tunnel junctions (MTJs) has been performed using rubrene, C<jats:sub>60</jats:sub>, and BCP as organic spacer layers. The simulation is considered as nonequilibrium Green's function assuming spin precession at ferromagnet/organic semiconductor (FM/OSC) interface defect states. The voltage‐dependent resistances for both parallel (<jats:italic>R</jats:italic><jats:sub>P</jats:sub>) and antiparallel (<jats:italic>R</jats:italic><jats:sub>AP</jats:sub>) orientations have been observed to be dependent on spin injection from FM/OSC defect states. Pinning well‐dependent defect state depths have been associated with band misalignment‐induced lattice distortion at FM/OSC interface of the devices. The large tunnel magnetoresistance (TMR) response for rubrene‐based MTJ device has been attributed to a higher change of FM/OSC defect state depths with voltage. High TMR may have reduced spin torque‐dependent spin precession, leading to lower spin transfer torque for the rubrene device. Hence, engineering of defect states at the FM/OSC interface may lead to the successful realization of enhanced TMR in organic spacer MTJs for high‐performance spintronic memory applications.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"14 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400059","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, analytical modeling of Fe3O4/x(≈1.1 nm)/Co (x = rubrene, C60, and bathocuproine (BCP)) magnetic tunnel junctions (MTJs) has been performed using rubrene, C60, and BCP as organic spacer layers. The simulation is considered as nonequilibrium Green's function assuming spin precession at ferromagnet/organic semiconductor (FM/OSC) interface defect states. The voltage‐dependent resistances for both parallel (RP) and antiparallel (RAP) orientations have been observed to be dependent on spin injection from FM/OSC defect states. Pinning well‐dependent defect state depths have been associated with band misalignment‐induced lattice distortion at FM/OSC interface of the devices. The large tunnel magnetoresistance (TMR) response for rubrene‐based MTJ device has been attributed to a higher change of FM/OSC defect state depths with voltage. High TMR may have reduced spin torque‐dependent spin precession, leading to lower spin transfer torque for the rubrene device. Hence, engineering of defect states at the FM/OSC interface may lead to the successful realization of enhanced TMR in organic spacer MTJs for high‐performance spintronic memory applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁磁体/有机半导体界面缺陷态对混合磁性隧道结隧道磁阻的影响
在此,我们使用红宝石、C60 和 BCP 作为有机间隔层,对 Fe3O4/x(≈1.1 nm)/Co(x = rubrene、C60 和 bathocuproine (BCP))磁隧道结 (MTJ) 进行了分析建模。模拟被视为非平衡格林函数,假定铁磁体/有机半导体(FM/OSC)界面缺陷态的自旋前驱。据观察,平行(RP)和反平行(RAP)取向的电压相关电阻取决于 FM/OSC 缺陷态的自旋注入。与引脚相关的缺陷态深度与器件 FM/OSC 界面的带错配引起的晶格畸变有关。基于红宝石的 MTJ 器件的隧道磁阻(TMR)响应较大,这是因为 FM/OSC 缺陷态深度随电压的变化较大。高 TMR 可能会减少依赖于自旋转矩的自旋前驱,从而降低红柱石器件的自旋传递转矩。因此,对 FM/OSC 界面的缺陷态进行工程设计可能会成功实现有机间隔 MTJ 的增强 TMR,从而实现高性能的自旋电子存储器应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica Status Solidi B-basic Solid State Physics
Physica Status Solidi B-basic Solid State Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
6.20%
发文量
321
审稿时长
2 months
期刊介绍: physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions. physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.
期刊最新文献
Accelerating Nonequilibrium Green Functions Simulations: The G1–G2 Scheme and Beyond Tip‐Enhanced Raman Spectroscopy Coherence Length of 2D Materials: An Application to Graphene Magnetic Anisotropy of Cr2Te3: Competition between Surface and Middle Layers Progress in Non‐equilibrium Green's Functions VIII (PNGF VIII) Half‐Metallic Ferromagnetism in 2D Janus Monolayers: Mn2GeX (X = As, Sb)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1