N-Doped Carbon Coated Bimetallic CoFe2O4 Nanomembranes as An Enhanced Negative Electrode for Asymmetric Supercapacitors

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-06-26 DOI:10.1002/cnma.202400176
Dr. Ruizhi Li, Weiqun Li, Yuhua Li, Shengyuan Zhu, Dr. Xin Ba, Dr. Yingke Zhou
{"title":"N-Doped Carbon Coated Bimetallic CoFe2O4 Nanomembranes as An Enhanced Negative Electrode for Asymmetric Supercapacitors","authors":"Dr. Ruizhi Li,&nbsp;Weiqun Li,&nbsp;Yuhua Li,&nbsp;Shengyuan Zhu,&nbsp;Dr. Xin Ba,&nbsp;Dr. Yingke Zhou","doi":"10.1002/cnma.202400176","DOIUrl":null,"url":null,"abstract":"<p>In-suit nitrogen-doped carbon layer coated on CoFe<sub>2</sub>O<sub>4</sub> nanomembrane (NC−CoFe<sub>2</sub>O<sub>4</sub>) directly grown on carbon cloth was successfully fabricated. The electrochemical performance was conveniently manipulated by regulating the molar ration of Co<sup>2+</sup> : Fe<sup>3+</sup> (molar ration=1 : 2, CoFe<sub>2</sub>O<sub>4</sub> nanomembrane, 2.9 F cm<sup>−2</sup>). Nitrogen-doped (N-doped) carbon coating strategy on CoFe<sub>2</sub>O<sub>4</sub> nanomembrane (NC−CoFe<sub>2</sub>O<sub>4</sub>) via annealing of polypyrrole (PPy) was presented and NC−CoFe<sub>2</sub>O<sub>4</sub> nanomembranes displayed a prominent capacitance of 12.1 F cm<sup>−2</sup> (2563.8 F g<sup>−1</sup>) at 5 mA cm<sup>−2</sup>. More important, the composite demonstrated more stable microstructure and showed long-term cycling stability (16.0 % decrease after 7000 cycles), which was significantly better than the unmodified CoFe<sub>2</sub>O<sub>4</sub> (55.8 % decrease after 1000 cycles). To verify the practicability of the materials, an aqueous asymmetric supercapacitor has been fabricated using NC−CoFe<sub>2</sub>O<sub>4</sub> composite anode and MnO<sub>2</sub>/CNTs cathode, and the device has a remarkable wide operating voltage range of 1.9 V. In addition, the assembled device has an exceptional specific capacity of 1.3 F cm<sup>−2</sup> at 10 mA cm<sup>−2</sup>, high energy density (43.3 Wh kg<sup>−1</sup> at a power density of 642.9 W kg<sup>−1</sup>), and also with a good capacity retention rate of 84.9 % after 1000 cycles.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400176","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In-suit nitrogen-doped carbon layer coated on CoFe2O4 nanomembrane (NC−CoFe2O4) directly grown on carbon cloth was successfully fabricated. The electrochemical performance was conveniently manipulated by regulating the molar ration of Co2+ : Fe3+ (molar ration=1 : 2, CoFe2O4 nanomembrane, 2.9 F cm−2). Nitrogen-doped (N-doped) carbon coating strategy on CoFe2O4 nanomembrane (NC−CoFe2O4) via annealing of polypyrrole (PPy) was presented and NC−CoFe2O4 nanomembranes displayed a prominent capacitance of 12.1 F cm−2 (2563.8 F g−1) at 5 mA cm−2. More important, the composite demonstrated more stable microstructure and showed long-term cycling stability (16.0 % decrease after 7000 cycles), which was significantly better than the unmodified CoFe2O4 (55.8 % decrease after 1000 cycles). To verify the practicability of the materials, an aqueous asymmetric supercapacitor has been fabricated using NC−CoFe2O4 composite anode and MnO2/CNTs cathode, and the device has a remarkable wide operating voltage range of 1.9 V. In addition, the assembled device has an exceptional specific capacity of 1.3 F cm−2 at 10 mA cm−2, high energy density (43.3 Wh kg−1 at a power density of 642.9 W kg−1), and also with a good capacity retention rate of 84.9 % after 1000 cycles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂 N 的碳涂层双金属 CoFe2O4 纳米膜作为不对称超级电容器的增强型负电极
成功制备了直接生长在碳布上的掺氮碳层包覆 CoFe2O4 纳米膜(NC-CoFe2O4)。通过调节 Co2+:Fe3+(摩尔比=1:2,CoFe2O4 纳米膜,2.9 F cm-2)。通过聚吡咯(PPy)退火在 CoFe2O4 纳米膜(NC-CoFe2O4)上进行氮掺杂(N-掺杂)碳涂层的策略被提出,NC-CoFe2O4 纳米膜在 5 mA cm-2 时显示出 12.1 F cm-2 (2563.8 F g-1)的显著电容。更重要的是,该复合材料显示出更稳定的微观结构和长期循环稳定性(7000 次循环后降低 16.0%),明显优于未改性 CoFe2O4(1000 次循环后降低 55.8%)。为了验证这些材料的实用性,我们利用 NC-CoFe2O4 复合阳极和 MnO2/CNTs 阴极制作了一个水基不对称超级电容器,该器件具有 1.9 V 的宽工作电压范围。此外,该装置在 10 mA cm-2 时的比容量为 1.3 F cm-2,能量密度高(功率为 642.9 W kg-1 时为 43.3 Wh kg-1),1000 次循环后的容量保持率为 84.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: Single Source Precursor Path to 2D Materials: A Case Study of Solution-Processed Molybdenum-Rich MoSe2-x Ultrathin Nanosheets (ChemNanoMat 11/2024) Construction of PtAg-on-Au Heterostructured Nanoplates for Improved Electrocatalytic Activity of Formic Acid Oxidation New Ceramic Material Y2-xVxO3+x – Mechanochemical Synthesis and Some Physicochemical Properties Expression of Concern: Affinity of Glycan-Modified Nanodiamonds towards Lectins and Uropathogenic Escherichia Coli Front Cover: Tailoring Energy Structure of Low-Toxic Ternary Ag−Bi−S Quantum Dots through Solution-Phase Synthesis for Quantum-Dot-Sensitized Solar Cells (ChemNanoMat 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1