From Structure to Catalysis: Advances in Metal-Organic Frameworks-Based Shape-Selective Reactions

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-06-18 DOI:10.1002/cnma.202400049
Dr. Fahimeh Hooriabad Saboor, Dr. Shadab Shahsavari, Ms. Mahshid Zandjou, Dr. Mehrdad Asgari
{"title":"From Structure to Catalysis: Advances in Metal-Organic Frameworks-Based Shape-Selective Reactions","authors":"Dr. Fahimeh Hooriabad Saboor,&nbsp;Dr. Shadab Shahsavari,&nbsp;Ms. Mahshid Zandjou,&nbsp;Dr. Mehrdad Asgari","doi":"10.1002/cnma.202400049","DOIUrl":null,"url":null,"abstract":"<p>The presence of shape- and size-selective catalysts in various catalytic reactions is of paramount importance. Metal-organic frameworks (MOFs) possess a distinctive characteristic of lacking in-accessible dead spaces, owing to their well-structured nature. The effective separation of active sites within MOFs is facilitated by their exceptionally high surface area, which allows for a high density of active sites per unit volume of the catalyst. In this comprehensive review article, we delve into one of the most critical and practical features of MOFs: their ability to modify and engineer the structure of these materials. This structural engineering approach enables the attainment of desired physical, chemical, and surface properties, particularly in the realm of heterogeneous catalysts. The article encompasses several key areas, including surface functionalization within MOFs, synthesis of novel enzyme-inspired MOFs, creation of mesoporous MOFs, development of porous structures utilizing MOFs, and engineering of structural limitations in MOFs. These rapidly advancing and highly applicable topics, especially in the field of heterogeneous catalysts, are thoroughly investigated and analyzed within the purview of this comprehensive review article.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202400049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400049","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of shape- and size-selective catalysts in various catalytic reactions is of paramount importance. Metal-organic frameworks (MOFs) possess a distinctive characteristic of lacking in-accessible dead spaces, owing to their well-structured nature. The effective separation of active sites within MOFs is facilitated by their exceptionally high surface area, which allows for a high density of active sites per unit volume of the catalyst. In this comprehensive review article, we delve into one of the most critical and practical features of MOFs: their ability to modify and engineer the structure of these materials. This structural engineering approach enables the attainment of desired physical, chemical, and surface properties, particularly in the realm of heterogeneous catalysts. The article encompasses several key areas, including surface functionalization within MOFs, synthesis of novel enzyme-inspired MOFs, creation of mesoporous MOFs, development of porous structures utilizing MOFs, and engineering of structural limitations in MOFs. These rapidly advancing and highly applicable topics, especially in the field of heterogeneous catalysts, are thoroughly investigated and analyzed within the purview of this comprehensive review article.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从结构到催化:基于金属有机框架的形状选择性反应研究进展
在各种催化反应中,形状和尺寸选择性催化剂的存在至关重要。金属有机框架(MOFs)因其结构良好而具有缺乏可进入死角的显著特点。MOFs 极高的比表面积使得催化剂单位体积内的活性位点密度很高,从而促进了活性位点在 MOFs 内的有效分离。在这篇综合评论文章中,我们将深入探讨 MOFs 最关键、最实用的特点之一:对这些材料的结构进行修改和工程设计的能力。这种结构工程方法可以实现理想的物理、化学和表面特性,特别是在异相催化剂领域。文章涵盖了几个关键领域,包括 MOFs 的表面功能化、新型酶启发 MOFs 的合成、介孔 MOFs 的创建、利用 MOFs 开发多孔结构以及 MOFs 结构限制工程。本综述文章将深入研究和分析这些快速发展和高度适用的主题,尤其是在异相催化剂领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: Single Source Precursor Path to 2D Materials: A Case Study of Solution-Processed Molybdenum-Rich MoSe2-x Ultrathin Nanosheets (ChemNanoMat 11/2024) Construction of PtAg-on-Au Heterostructured Nanoplates for Improved Electrocatalytic Activity of Formic Acid Oxidation New Ceramic Material Y2-xVxO3+x – Mechanochemical Synthesis and Some Physicochemical Properties Expression of Concern: Affinity of Glycan-Modified Nanodiamonds towards Lectins and Uropathogenic Escherichia Coli Front Cover: Tailoring Energy Structure of Low-Toxic Ternary Ag−Bi−S Quantum Dots through Solution-Phase Synthesis for Quantum-Dot-Sensitized Solar Cells (ChemNanoMat 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1