Automating the Identification of High-Value Datasets in Open Government Data Portals

Alfonso Quarati, Anastasija Nikiforova
{"title":"Automating the Identification of High-Value Datasets in Open Government Data Portals","authors":"Alfonso Quarati, Anastasija Nikiforova","doi":"arxiv-2406.10541","DOIUrl":null,"url":null,"abstract":"Recognized for fostering innovation and transparency, driving economic\ngrowth, enhancing public services, supporting research, empowering citizens,\nand promoting environmental sustainability, High-Value Datasets (HVD) play a\ncrucial role in the broader Open Government Data (OGD) movement. However,\nidentifying HVD presents a resource-intensive and complex challenge due to the\nnuanced nature of data value. Our proposal aims to automate the identification\nof HVDs on OGD portals using a quantitative approach based on a detailed\nanalysis of user interest derived from data usage statistics, thereby\nminimizing the need for human intervention. The proposed method involves\nextracting download data, analyzing metrics to identify high-value categories,\nand comparing HVD datasets across different portals. This automated process\nprovides valuable insights into trends in dataset usage, reflecting citizens'\nneeds and preferences. The effectiveness of our approach is demonstrated\nthrough its application to a sample of US OGD city portals. The practical\nimplications of this study include contributing to the understanding of HVD at\nboth local and national levels. By providing a systematic and efficient means\nof identifying HVD, our approach aims to inform open governance initiatives and\npractices, aiding OGD portal managers and public authorities in their efforts\nto optimize data dissemination and utilization.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.10541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recognized for fostering innovation and transparency, driving economic growth, enhancing public services, supporting research, empowering citizens, and promoting environmental sustainability, High-Value Datasets (HVD) play a crucial role in the broader Open Government Data (OGD) movement. However, identifying HVD presents a resource-intensive and complex challenge due to the nuanced nature of data value. Our proposal aims to automate the identification of HVDs on OGD portals using a quantitative approach based on a detailed analysis of user interest derived from data usage statistics, thereby minimizing the need for human intervention. The proposed method involves extracting download data, analyzing metrics to identify high-value categories, and comparing HVD datasets across different portals. This automated process provides valuable insights into trends in dataset usage, reflecting citizens' needs and preferences. The effectiveness of our approach is demonstrated through its application to a sample of US OGD city portals. The practical implications of this study include contributing to the understanding of HVD at both local and national levels. By providing a systematic and efficient means of identifying HVD, our approach aims to inform open governance initiatives and practices, aiding OGD portal managers and public authorities in their efforts to optimize data dissemination and utilization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动识别开放式政府数据门户中的高价值数据集
高价值数据集 (HVD) 因其促进创新和提高透明度、推动经济增长、加强公共服务、支持研究、增强公民能力和促进环境可持续性而受到认可,在更广泛的开放式政府数据 (OGD) 运动中发挥着重要作用。然而,由于数据价值的差异性,识别高价值数据集是一项资源密集型的复杂挑战。我们的建议旨在使用定量方法自动识别 OGD 门户上的 HVD,该方法基于从数据使用统计中得出的对用户兴趣的详细分析,从而最大限度地减少了人工干预的需要。所提出的方法包括提取下载数据、分析指标以识别高价值类别,以及比较不同门户网站的 HVD 数据集。这一自动化过程可提供有关数据集使用趋势的宝贵见解,反映出公民的需求和偏好。通过将我们的方法应用于美国 OGD 城市门户网站样本,证明了该方法的有效性。本研究的实际意义包括有助于了解地方和国家层面的 HVD。通过提供系统、高效的 HVD 识别方法,我们的方法旨在为开放治理倡议和实践提供信息,帮助 OGD 门户网站管理者和公共机构优化数据传播和利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publishing Instincts: An Exploration-Exploitation Framework for Studying Academic Publishing Behavior and "Home Venues" Research Citations Building Trust in Wikipedia Evaluating the Linguistic Coverage of OpenAlex: An Assessment of Metadata Accuracy and Completeness Towards understanding evolution of science through language model series Ensuring Adherence to Standards in Experiment-Related Metadata Entered Via Spreadsheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1