Composition-Nanoarchitecture-Performance Analysis of High Energy Density Electrodeposited Silicon for Lithium-Ion Battery Anodes

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-06-28 DOI:10.1021/acsaem.4c00941
Nathan J. Fritz, Hyewon Jeong, Beniamin Zahiri, Pengcheng Sun, Gaurav Singhal, Michael A. Caple, Zhenzhen Yang, Jingcheng Ma, Minseok Choi, Akwar A. Obong, Aaron J. Blake, John B. Cook, Nenad Miljkovic, David G. Cahill, Paul V. Braun
{"title":"Composition-Nanoarchitecture-Performance Analysis of High Energy Density Electrodeposited Silicon for Lithium-Ion Battery Anodes","authors":"Nathan J. Fritz, Hyewon Jeong, Beniamin Zahiri, Pengcheng Sun, Gaurav Singhal, Michael A. Caple, Zhenzhen Yang, Jingcheng Ma, Minseok Choi, Akwar A. Obong, Aaron J. Blake, John B. Cook, Nenad Miljkovic, David G. Cahill, Paul V. Braun","doi":"10.1021/acsaem.4c00941","DOIUrl":null,"url":null,"abstract":"Electrodeposition of silicon (Si) was previously demonstrated as a promising method for fabricating 3D-structured lithium-ion battery anodes. However, the relationship between the electrochemical performance and chemical composition of the relatively impure electrodeposited silicon is not well understood. Here, we report the electrodeposition of a Si-dominant active material (EDEP-Si) onto 3D-structured nickel (Ni) scaffolds and systematically compare the electrochemical properties, elemental composition, atomistic Si coordination, and molecular structure of EDEP-Si with high-purity amorphous Si grown via static chemical vapor deposition. Despite the considerable amount of carbon (9–11 at %) and oxygen (42–44 at %) present in EDEP-Si, the cycling stability and high reversible specific capacity are remarkably similar to those of CVD-Si on a silicon basis (∼2400 mA h/g-Si after 100 cycles). The primary difference is that EDEP-Si exhibits reduced cycling efficiency over the first 10–20 cycles. Reactions between carbon and, more importantly, oxygen in EDEP-Si with lithium are likely responsible for the reduced early cycle performance and lower capacity of the total deposit. Our observations suggest ultrapure Si is not necessary for high electrochemical access to reversible charge storage, although limiting the presence of incorporated impurity species would improve energy density and first cycle efficiency.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c00941","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrodeposition of silicon (Si) was previously demonstrated as a promising method for fabricating 3D-structured lithium-ion battery anodes. However, the relationship between the electrochemical performance and chemical composition of the relatively impure electrodeposited silicon is not well understood. Here, we report the electrodeposition of a Si-dominant active material (EDEP-Si) onto 3D-structured nickel (Ni) scaffolds and systematically compare the electrochemical properties, elemental composition, atomistic Si coordination, and molecular structure of EDEP-Si with high-purity amorphous Si grown via static chemical vapor deposition. Despite the considerable amount of carbon (9–11 at %) and oxygen (42–44 at %) present in EDEP-Si, the cycling stability and high reversible specific capacity are remarkably similar to those of CVD-Si on a silicon basis (∼2400 mA h/g-Si after 100 cycles). The primary difference is that EDEP-Si exhibits reduced cycling efficiency over the first 10–20 cycles. Reactions between carbon and, more importantly, oxygen in EDEP-Si with lithium are likely responsible for the reduced early cycle performance and lower capacity of the total deposit. Our observations suggest ultrapure Si is not necessary for high electrochemical access to reversible charge storage, although limiting the presence of incorporated impurity species would improve energy density and first cycle efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于锂离子电池阳极的高能量密度电沉积硅的成分-纳米结构-性能分析
硅(Si)的电沉积是制造三维结构锂离子电池阳极的一种可行方法。然而,人们对电化学性能与相对不纯的电沉积硅的化学成分之间的关系还不甚了解。在此,我们报告了在三维结构镍(Ni)支架上电沉积硅主导活性材料(EDEP-Si)的情况,并系统地比较了 EDEP-Si 与通过静态化学气相沉积生长的高纯度非晶硅的电化学性能、元素组成、硅原子配位和分子结构。尽管 EDEP-Si 中含有大量的碳(9-11%)和氧(42-44%),但其循环稳定性和高可逆比容量与硅基 CVD-Si 非常相似(100 次循环后可达 2400 mA h/g-Si)。主要区别在于,EDEP-Si 在最初的 10-20 次循环中显示出较低的循环效率。EDEP-Si 中的碳(更重要的是氧)与锂的反应可能是导致早期循环性能降低和总沉积物容量降低的原因。我们的观察结果表明,虽然限制杂质的存在会提高能量密度和首次循环效率,但超纯硅并不是电化学可逆电荷存储的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Organic Battery Materials Fe-Induced Surface Regulation and Accelerated Hydrogen Evolution Kinetics in γ-MnS Three-Dimensional Microarchitectures Unprecedented InOOH Hexagonal Nanoplates for Highly Selective Synthesis of Methanol via Moderately Photothermal CO2 Hydrogenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1