B. T. Ratov, V. A. Mechnik, N. A. Bondarenko, E. S. Gevorkyan, V. M. Kolodnitskyi, A. B. Kalzhanova, P. S. Sundetova, Z. G. Utepov
{"title":"Phase Formation and Diamond Retention in Cdiamond–(WC–Co)–ZrO2 Composites Formed by Spark Plasma Sintering Method","authors":"B. T. Ratov, V. A. Mechnik, N. A. Bondarenko, E. S. Gevorkyan, V. M. Kolodnitskyi, A. B. Kalzhanova, P. S. Sundetova, Z. G. Utepov","doi":"10.3103/S1063457624020084","DOIUrl":null,"url":null,"abstract":"<p>New data on the effect of a ZrO<sub>2</sub> nanopowder additive (from 0 to 10 wt %) on phase formation and structural transformations in the hard-alloy matrix in the region of destruction under impact loading and on diamond retention in composite diamond-containing 25С<sub>diamond</sub>–70.5WC–4.5Co materials formed by spark plasma sintering are presented. The sintered initial 94WC–6Co composite consists of the hexagonal WC phase with unit cell parameters <i>a</i> = 0.2906 nm and <i>с</i> = 0.2837 nm, the cubic Co<sub>3</sub>W<sub>3</sub>C phase (<i>а</i> = 1.1112 nm), and the hexagonal graphite phase. The sintered composites with ZrO<sub>2</sub> content from 0.5 to 10% is composed by the WC and Co<sub>3</sub>W<sub>3</sub>C structural phases, amorphous carbon, and the tetragonal ZrO<sub>2</sub> phase (<i>а</i> = 0.36019 nm, <i>с</i> = 0.5174 nm). It has been shown that, when the ZrO<sub>2</sub> content is increased, the sizes of phase components and average microstrains are more rapidly decreased in directions <i>с</i> and <i>а</i> of the 94WC–6Co composite. The addition of ZrO<sub>2</sub> to the 25С<sub>diamond</sub>–70.5WC–4.5Co composite improves diamond retention. In the sintered composites, diamond retention is improved due to that they have a higher content of the tetragonal ZrO<sub>2</sub> phase, which provides the transformational mechanism of strengthening in the hard-alloy matrix material via its structural transformations into a denser one and the formation of a more fine-grained matrix structure with thin interlayers of cobalt bonds between WC grains.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 2","pages":"112 - 128"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624020084","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
New data on the effect of a ZrO2 nanopowder additive (from 0 to 10 wt %) on phase formation and structural transformations in the hard-alloy matrix in the region of destruction under impact loading and on diamond retention in composite diamond-containing 25Сdiamond–70.5WC–4.5Co materials formed by spark plasma sintering are presented. The sintered initial 94WC–6Co composite consists of the hexagonal WC phase with unit cell parameters a = 0.2906 nm and с = 0.2837 nm, the cubic Co3W3C phase (а = 1.1112 nm), and the hexagonal graphite phase. The sintered composites with ZrO2 content from 0.5 to 10% is composed by the WC and Co3W3C structural phases, amorphous carbon, and the tetragonal ZrO2 phase (а = 0.36019 nm, с = 0.5174 nm). It has been shown that, when the ZrO2 content is increased, the sizes of phase components and average microstrains are more rapidly decreased in directions с and а of the 94WC–6Co composite. The addition of ZrO2 to the 25Сdiamond–70.5WC–4.5Co composite improves diamond retention. In the sintered composites, diamond retention is improved due to that they have a higher content of the tetragonal ZrO2 phase, which provides the transformational mechanism of strengthening in the hard-alloy matrix material via its structural transformations into a denser one and the formation of a more fine-grained matrix structure with thin interlayers of cobalt bonds between WC grains.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.