Modeling and inferences for bounded multivariate time series of counts

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY Journal of the Korean Statistical Society Pub Date : 2024-06-25 DOI:10.1007/s42952-024-00273-4
Sangyeol Lee, Minyoung Jo
{"title":"Modeling and inferences for bounded multivariate time series of counts","authors":"Sangyeol Lee, Minyoung Jo","doi":"10.1007/s42952-024-00273-4","DOIUrl":null,"url":null,"abstract":"<p>This paper considers modeling bounded multivariate time series of counts and the inferential procedures of this model. For modeling, we introduce a hybrid type model similar to the scheme of integer-valued autoregressive (INAR) and conditional autoregressive heteroscedastic (INARCH) models. To estimate the model parameters, we use the conditional least squares estimator (CLSE) and minimum density power divergence estimator (MDPDE). To evaluate the small sample performances of the proposed estimators, we conduct a Monte Carlo simulation study and demonstrate that the proposed methods work well. Real data analysis is also carried out using syphilis data in the U.S. for illustration.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"30 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00273-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers modeling bounded multivariate time series of counts and the inferential procedures of this model. For modeling, we introduce a hybrid type model similar to the scheme of integer-valued autoregressive (INAR) and conditional autoregressive heteroscedastic (INARCH) models. To estimate the model parameters, we use the conditional least squares estimator (CLSE) and minimum density power divergence estimator (MDPDE). To evaluate the small sample performances of the proposed estimators, we conduct a Monte Carlo simulation study and demonstrate that the proposed methods work well. Real data analysis is also carried out using syphilis data in the U.S. for illustration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有界多元计数时间序列的建模和推论
本文探讨了有界多变量计数时间序列的建模以及该模型的推理过程。在建模时,我们引入了一种混合型模型,类似于整值自回归(INAR)和条件自回归异速(INARCH)模型的方案。为了估计模型参数,我们使用了条件最小二乘估计器(CLSE)和最小密度功率发散估计器(MDPDE)。为了评估所提出的估计器的小样本性能,我们进行了蒙特卡罗模拟研究,并证明所提出的方法运行良好。我们还利用美国的梅毒数据进行了真实数据分析,以资说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Korean Statistical Society
Journal of the Korean Statistical Society 数学-统计学与概率论
CiteScore
1.30
自引率
0.00%
发文量
37
审稿时长
3 months
期刊介绍: The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.
期刊最新文献
Asymmetric kernel density estimation for biased data Community detection for networks based on Monte Carlo type algorithms Integrated volatility estimation: the case of observed noise variables Using statistical models for optimal packaging in semiconductor manufacturing processes Generalized parametric help in Hilbertian additive regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1