Synthesis and Properties of Polysilsesquioxane Functionalized Poly(p-terphenyl-co-N-methyl-4-piperidine) Membrane for High Temperature Proton Exchange Membrane Fuel Cells

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Advanced Sustainable Systems Pub Date : 2024-06-21 DOI:10.1002/adsu.202400201
Lele Wang, Ting Wang, Qian Wang, Jin Wang, Jingshuai Yang
{"title":"Synthesis and Properties of Polysilsesquioxane Functionalized Poly(p-terphenyl-co-N-methyl-4-piperidine) Membrane for High Temperature Proton Exchange Membrane Fuel Cells","authors":"Lele Wang,&nbsp;Ting Wang,&nbsp;Qian Wang,&nbsp;Jin Wang,&nbsp;Jingshuai Yang","doi":"10.1002/adsu.202400201","DOIUrl":null,"url":null,"abstract":"<p>The development of high-performance, cost-effective high temperature polymer electrolyte membranes (HT-PEMs) is a great challenge for HT-PEM fuel cells. In this study, a new HT-PEM of polysilsesquioxane functionalized poly(<i>p</i>-terphenyl-co-<i>N</i>-methyl-4-piperidine) (PTP-CPTMS) is reported. Owing to the incorporation of the polysilsesquioxane network, the PTP-CPTMS membrane demonstrates an excellent phosphoric acid (PA) doping capacity and controlled swelling, compared to the benchmarks, that is, pristine PTP membrane and propyl group grafted PTP membrane (PTP-C3). As a result, the PTP-CPTMS/208%PA membrane exhibits a low volume swelling of 77%, a high conductivity of 0.070 S cm<sup>−1</sup> at 180 °C and a satisfactory tensile strength of 4.9 MPa at room temperature. Based on the above membrane, the H<sub>2</sub>-O<sub>2</sub> single cell is assembled and displays a steadily increased peak power density up to 220 °C, which is 769 mW cm<sup>−2</sup> without the need for external humidification or backpressure. This work provides a kind of polysilsesquioxane functionalized HT-PEMs, which hold substantial potential for application in HT-PEM fuel cells.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 11","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance, cost-effective high temperature polymer electrolyte membranes (HT-PEMs) is a great challenge for HT-PEM fuel cells. In this study, a new HT-PEM of polysilsesquioxane functionalized poly(p-terphenyl-co-N-methyl-4-piperidine) (PTP-CPTMS) is reported. Owing to the incorporation of the polysilsesquioxane network, the PTP-CPTMS membrane demonstrates an excellent phosphoric acid (PA) doping capacity and controlled swelling, compared to the benchmarks, that is, pristine PTP membrane and propyl group grafted PTP membrane (PTP-C3). As a result, the PTP-CPTMS/208%PA membrane exhibits a low volume swelling of 77%, a high conductivity of 0.070 S cm−1 at 180 °C and a satisfactory tensile strength of 4.9 MPa at room temperature. Based on the above membrane, the H2-O2 single cell is assembled and displays a steadily increased peak power density up to 220 °C, which is 769 mW cm−2 without the need for external humidification or backpressure. This work provides a kind of polysilsesquioxane functionalized HT-PEMs, which hold substantial potential for application in HT-PEM fuel cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高温质子交换膜燃料电池的聚硅氧烷功能化聚(对三联苯-共-N-甲基-4-哌啶)膜的合成与特性
开发高性能、高性价比的高温聚合物电解质膜(HT-PEM)是 HT-PEM 燃料电池面临的巨大挑战。本研究报告了一种由聚硅氧烷功能化聚(对三联苯-共 N-甲基-4-哌啶)(PTP-CPTMS)制成的新型 HT-PEM。与原始 PTP 膜和丙基接枝 PTP 膜(PTP-C3)相比,PTP-CPTMS 膜由于加入了聚硅烷基quioxane 网络,因此具有出色的磷酸(PA)掺杂能力和可控溶胀性。结果,PTP-CPTMS/208%PA 膜的体积膨胀率低至 77%,180 °C 时的电导率高达 0.070 S cm-1,室温下的拉伸强度为 4.9 MPa,令人满意。在上述膜的基础上,H2-O2 单电池组装完成,并在 220 ℃ 时显示出稳定增长的峰值功率密度,即 769 mW cm-2,而无需外部加湿或背压。这项研究提供了一种聚硅氧烷功能化 HT-PEM,在 HT-PEM 燃料电池中具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
期刊最新文献
Simultaneous Triboelectric and Mechanoluminescence Sensing Toward Self-Powered Applications (Adv. Sustainable Syst. 12/2024) Masthead: (Adv. Sustainable Syst. 12/2024) Co Modified Pr0.6Sm0.4Mn1O3 Perovskite Enhances the Non-Radical Pathway for Efficient Removal of Rhodamine B Ambipolar Nature Accelerates Dual-Functionality on Ni/Ni3N@NC for Simultaneous Hydrogen and Oxygen Evolution in Electrochemical Water Splitting System (Adv. Sustainable Syst. 11/2024) All Bio-Based µ-Beads from Microalgae for Probiotics Delivery (Adv. Sustainable Syst. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1