Ananta Man Singh Pradhan, Suchita Shrestha, Jung-Hyun Lee, In-Tak Hwang, Hyuck-Jin Park
{"title":"Utilizing artificial intelligence techniques for soil depth prediction and its influences in landslide hazard modeling","authors":"Ananta Man Singh Pradhan, Suchita Shrestha, Jung-Hyun Lee, In-Tak Hwang, Hyuck-Jin Park","doi":"10.1007/s00477-024-02765-5","DOIUrl":null,"url":null,"abstract":"<p>Soil depth plays a pivotal role in determining hillslope stability, understanding hydrogeology, promoting optimal vegetation growth, and comprehensively elucidating soil erosion dynamics. In this study, two robust artificial intelligence methodologies, quantile regression forest (QRF) and deep neural network (DNN), were employed to predict spatial variations in soil depth across a digital terrain. Particularly during periods of intense rainfall, shallow landslides pose recurrent threats to human safety and property integrity. Thus, the identification of potential landslide-prone regions becomes imperative for mitigating associated risks. During slope stability analyses, soil depth assumes significance; nonetheless, data regarding soil depth from areas prone to landslides are rarely obtained. The main objective of this study is to explore the impact of incorporating soil depth spatial distributions on the predictive capabilities of shallow landslide model within a given terrain. By leveraging two distinct spatial soil depth distributions, a comprehensive analysis of slope stability analysis was conducted. The significance of soil depth spatial distribution, particularly when employing DNN-generated data, is underscored in refining predictions and preventing overestimations of landslide-prone or stable regions. Notably, integration of DNN-derived soil depth data into the infinite slope model yielded a marked enhancement in the accuracy of factor of safety (FS) distributions, achieving an impressive 86.9% accuracy rate while QRF-derived FS has shown 74.7% accuracy. This analytical approach, while straightforward, offers a powerful tool for evaluating slope instability and forecasting shallow landslides, thereby facilitating proactive mitigation measures.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"30 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02765-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Soil depth plays a pivotal role in determining hillslope stability, understanding hydrogeology, promoting optimal vegetation growth, and comprehensively elucidating soil erosion dynamics. In this study, two robust artificial intelligence methodologies, quantile regression forest (QRF) and deep neural network (DNN), were employed to predict spatial variations in soil depth across a digital terrain. Particularly during periods of intense rainfall, shallow landslides pose recurrent threats to human safety and property integrity. Thus, the identification of potential landslide-prone regions becomes imperative for mitigating associated risks. During slope stability analyses, soil depth assumes significance; nonetheless, data regarding soil depth from areas prone to landslides are rarely obtained. The main objective of this study is to explore the impact of incorporating soil depth spatial distributions on the predictive capabilities of shallow landslide model within a given terrain. By leveraging two distinct spatial soil depth distributions, a comprehensive analysis of slope stability analysis was conducted. The significance of soil depth spatial distribution, particularly when employing DNN-generated data, is underscored in refining predictions and preventing overestimations of landslide-prone or stable regions. Notably, integration of DNN-derived soil depth data into the infinite slope model yielded a marked enhancement in the accuracy of factor of safety (FS) distributions, achieving an impressive 86.9% accuracy rate while QRF-derived FS has shown 74.7% accuracy. This analytical approach, while straightforward, offers a powerful tool for evaluating slope instability and forecasting shallow landslides, thereby facilitating proactive mitigation measures.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.