{"title":"A generic deep learning architecture optimization method for edge device based on start-up latency reduction","authors":"Qi Li, Hengyi Li, Lin Meng","doi":"10.1007/s11554-024-01496-8","DOIUrl":null,"url":null,"abstract":"<p>In the promising Artificial Intelligence of Things technology, deep learning algorithms are implemented on edge devices to process data locally. However, high-performance deep learning algorithms are accompanied by increased computation and parameter storage costs, leading to difficulties in implementing huge deep learning algorithms on memory and power constrained edge devices, such as smartphones and drones. Thus various compression methods are proposed, such as channel pruning. According to the analysis of low-level operations on edge devices, existing channel pruning methods have limited effect on latency optimization. Due to data processing operations, the pruned residual blocks still result in significant latency, which hinders real-time processing of CNNs on edge devices. Hence, we propose a generic deep learning architecture optimization method to achieve further acceleration on edge devices. The network is optimized in two stages, Global Constraint and Start-up Latency Reduction, and pruning of both channels and residual blocks is achieved. Optimized networks are evaluated on desktop CPU, FPGA, ARM CPU, and PULP platforms. The experimental results show that the latency is reduced by up to 70.40%, which is 13.63% higher than only applying channel pruning and achieving real-time processing in the edge device.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"215 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01496-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the promising Artificial Intelligence of Things technology, deep learning algorithms are implemented on edge devices to process data locally. However, high-performance deep learning algorithms are accompanied by increased computation and parameter storage costs, leading to difficulties in implementing huge deep learning algorithms on memory and power constrained edge devices, such as smartphones and drones. Thus various compression methods are proposed, such as channel pruning. According to the analysis of low-level operations on edge devices, existing channel pruning methods have limited effect on latency optimization. Due to data processing operations, the pruned residual blocks still result in significant latency, which hinders real-time processing of CNNs on edge devices. Hence, we propose a generic deep learning architecture optimization method to achieve further acceleration on edge devices. The network is optimized in two stages, Global Constraint and Start-up Latency Reduction, and pruning of both channels and residual blocks is achieved. Optimized networks are evaluated on desktop CPU, FPGA, ARM CPU, and PULP platforms. The experimental results show that the latency is reduced by up to 70.40%, which is 13.63% higher than only applying channel pruning and achieving real-time processing in the edge device.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.