{"title":"Low-complexity EVM estimation based on artificial neural networks for coherent optical systems","authors":"Dhirendra Kumar Jha and Jitendra K Mishra","doi":"10.1088/2040-8986/ad529f","DOIUrl":null,"url":null,"abstract":"With continuous growth in modulation formats, the requirement for autonomous devices is becoming more important than ever. Predicting error vector magnitude (EVM) of m-ary quadrature amplitude modulation (mQAM) are intricate issue for the effective design of transmission systems. Existing estimation techniques have survived through repetitive processes that are frequently computationally expensive, and time-consuming. Recently deep learning approaches demonstrated good performance as useful computational tools, offering a different way for accelerating such mQAM simulations. This paper introduces an artificial neural network (ANN) architecture that aims to forecast the EVM of the popular modulation forms including 18 Gbaud 8QAM, 14 Gbaud 16QAM, and 10 Gbaud 64QAM under different transmission conditions. Amplitude histograms (AHs) are produced from constellation diagrams obtained with varying launch power, laser linewidth, OSNR, and transmission distance by an offline preprocessing flow. The fully trained framework exhibits superior performance in terms of computing cost compared to the simulation experiments. The overall execution time of the ANN-based modeling method is approximately 234 s as opposed to more than 23000 s when employing the simulation technique, resulting in a 99% reduction in computation time. As a result, this technology opens the door to quick, all-encompassing techniques for characterizing and analyzing optical fiber problems.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"27 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad529f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
With continuous growth in modulation formats, the requirement for autonomous devices is becoming more important than ever. Predicting error vector magnitude (EVM) of m-ary quadrature amplitude modulation (mQAM) are intricate issue for the effective design of transmission systems. Existing estimation techniques have survived through repetitive processes that are frequently computationally expensive, and time-consuming. Recently deep learning approaches demonstrated good performance as useful computational tools, offering a different way for accelerating such mQAM simulations. This paper introduces an artificial neural network (ANN) architecture that aims to forecast the EVM of the popular modulation forms including 18 Gbaud 8QAM, 14 Gbaud 16QAM, and 10 Gbaud 64QAM under different transmission conditions. Amplitude histograms (AHs) are produced from constellation diagrams obtained with varying launch power, laser linewidth, OSNR, and transmission distance by an offline preprocessing flow. The fully trained framework exhibits superior performance in terms of computing cost compared to the simulation experiments. The overall execution time of the ANN-based modeling method is approximately 234 s as opposed to more than 23000 s when employing the simulation technique, resulting in a 99% reduction in computation time. As a result, this technology opens the door to quick, all-encompassing techniques for characterizing and analyzing optical fiber problems.
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.