Tae-Kyung Lee, Kara Kassees, Chia-Yuan Chen, Suryavathi Viswanadhapalli, Karla Parra, Ratna K. Vadlamudi and Jung-Mo Ahn*,
{"title":"Structure–Activity Relationship Study of Tris-Benzamides as Estrogen Receptor Coregulator Binding Modulators","authors":"Tae-Kyung Lee, Kara Kassees, Chia-Yuan Chen, Suryavathi Viswanadhapalli, Karla Parra, Ratna K. Vadlamudi and Jung-Mo Ahn*, ","doi":"10.1021/acsptsci.4c00125","DOIUrl":null,"url":null,"abstract":"<p >Estrogen receptor coregulator binding modulators (ERXs) are a novel class of molecules targeting the interaction between estrogen receptor α (ERα) and its coregulator proteins, which has proven to be an attractive strategy for overcoming endocrine resistance in breast cancer. We previously reported ERX-11, an orally bioavailable tris-benzamide, that demonstrated promising antitumor activity against ERα-positive breast cancer cells. To comprehend the significance of the substituents in ERX-11, we carried out structure–activity relationship studies. In addition, we introduced additional alkyl substituents at either the N- or C-terminus to improve binding affinity and biological activity. Further optimization guided by conformational restriction led to the identification of a <i>trans</i>-4-phenylcyclcohexyl group at the C-terminus (<b>18h</b>), resulting in a greater than 10-fold increase in binding affinity and cell growth inhibition potency compared to ERX-11. Tris-benzamide <b>18h</b> disrupted the ERα-coregulator interaction and inhibited the ERα-mediated transcriptional activity. It demonstrated strong antiproliferative activity on ERα-positive breast cancer cells both <i>in vitro</i> and <i>in vivo</i>, offering a promising potential as a therapeutic candidate for treating ERα-positive breast cancer.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2023–2043"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Estrogen receptor coregulator binding modulators (ERXs) are a novel class of molecules targeting the interaction between estrogen receptor α (ERα) and its coregulator proteins, which has proven to be an attractive strategy for overcoming endocrine resistance in breast cancer. We previously reported ERX-11, an orally bioavailable tris-benzamide, that demonstrated promising antitumor activity against ERα-positive breast cancer cells. To comprehend the significance of the substituents in ERX-11, we carried out structure–activity relationship studies. In addition, we introduced additional alkyl substituents at either the N- or C-terminus to improve binding affinity and biological activity. Further optimization guided by conformational restriction led to the identification of a trans-4-phenylcyclcohexyl group at the C-terminus (18h), resulting in a greater than 10-fold increase in binding affinity and cell growth inhibition potency compared to ERX-11. Tris-benzamide 18h disrupted the ERα-coregulator interaction and inhibited the ERα-mediated transcriptional activity. It demonstrated strong antiproliferative activity on ERα-positive breast cancer cells both in vitro and in vivo, offering a promising potential as a therapeutic candidate for treating ERα-positive breast cancer.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.