van der Waals gap modulation of graphene oxide through mono-Boc ethylenediamine anchoring for superior Li-ion batteries†

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-06-21 DOI:10.1039/D4YA00217B
Sneha Mandal, Vijayamohanan K. Pillai, Mano Ranjana Ponraj, Thushara K M, Jebasingh Bhagavathsingh, Stephan L. Grage, Xihong Peng, Jeon Woong Kang, Dorian Liepmann, Arunachala Nadar Mada Kannan, Velmurugan Thavasi and Venkatesan Renugopalakrishnan
{"title":"van der Waals gap modulation of graphene oxide through mono-Boc ethylenediamine anchoring for superior Li-ion batteries†","authors":"Sneha Mandal, Vijayamohanan K. Pillai, Mano Ranjana Ponraj, Thushara K M, Jebasingh Bhagavathsingh, Stephan L. Grage, Xihong Peng, Jeon Woong Kang, Dorian Liepmann, Arunachala Nadar Mada Kannan, Velmurugan Thavasi and Venkatesan Renugopalakrishnan","doi":"10.1039/D4YA00217B","DOIUrl":null,"url":null,"abstract":"<p >Li-ion batteries stand out among energy storage systems due to their higher energy and power density, cycle life, and high-rate performance. Development of advanced, high-capacity anodes is essential for enhancing their performance, safety, and durability, and recently, two-dimensional materials have garnered extensive attention in this regard due to distinct properties, particularly their ability to modulate van der Waals gap through intercalation. Covalently intercalated Graphene oxide interlayer galleries with mono-Boc-ethylenediamine (GO-EnBoc) was synthesized <em>via</em> the ring opening of epoxide, forming an amino alcohol moiety. This creates three coordination sites for Li ion exchange on the graphene oxide nanosheets' surface. Consequently, the interlayer <em>d</em>-spacing expands from 8.47 Å to 13.17 Å, as anticipated. When explored as an anode, Li–GO–EnBoc shows a significant enhancement in the stable and reversible capacity of 270 mA h g<small><sup>−1</sup></small> at a current density of 25 mA g<small><sup>−1</sup></small> compared to GO (80 mA h g<small><sup>−1</sup></small>), without compromising the mechanical or chemical stability. Through <small><sup>13</sup></small>C, <small><sup>7</sup></small>Li and <small><sup>6</sup></small>Li MAS NMR, XPS, IR, Raman microscopy, and density functional theory (DFT) calculations, we confirm the positioning of Li<small><sup>+</sup></small> ions at multiple sites of the interlayer gallery, which enhances the electrochemical performance. Our findings suggest that these novel systematically modulated van der Waals gap GO-engineered materials hold promise as efficient anodes for Li-ion batteries.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00217b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00217b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Li-ion batteries stand out among energy storage systems due to their higher energy and power density, cycle life, and high-rate performance. Development of advanced, high-capacity anodes is essential for enhancing their performance, safety, and durability, and recently, two-dimensional materials have garnered extensive attention in this regard due to distinct properties, particularly their ability to modulate van der Waals gap through intercalation. Covalently intercalated Graphene oxide interlayer galleries with mono-Boc-ethylenediamine (GO-EnBoc) was synthesized via the ring opening of epoxide, forming an amino alcohol moiety. This creates three coordination sites for Li ion exchange on the graphene oxide nanosheets' surface. Consequently, the interlayer d-spacing expands from 8.47 Å to 13.17 Å, as anticipated. When explored as an anode, Li–GO–EnBoc shows a significant enhancement in the stable and reversible capacity of 270 mA h g−1 at a current density of 25 mA g−1 compared to GO (80 mA h g−1), without compromising the mechanical or chemical stability. Through 13C, 7Li and 6Li MAS NMR, XPS, IR, Raman microscopy, and density functional theory (DFT) calculations, we confirm the positioning of Li+ ions at multiple sites of the interlayer gallery, which enhances the electrochemical performance. Our findings suggest that these novel systematically modulated van der Waals gap GO-engineered materials hold promise as efficient anodes for Li-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过单叔丁氧羰基乙二胺锚定调制氧化石墨烯的范德华间隙,用于锂离子电池
锂离子电池因其较高的能量和功率密度、循环寿命和高倍率性能而在储能系统中脱颖而出。开发先进的高容量阳极对于提高电池的性能、安全性和耐用性至关重要,最近,二维材料因其独特的性能,尤其是通过插层调节范德华间隙的能力,在这方面引起了广泛关注。我们合成了一种晶体共价插层,通过环氧化物开环将选择性保护的单叔丁氧羰基乙二胺插入氧化石墨烯层间廊道(GO-EnBoc),形成氨基醇分子。这就在氧化石墨烯纳米片表面形成了三个锂离子交换配位位点。因此,正如预期的那样,层间 d 距从 8.47 Å 扩大到 13.17 Å。在作为阳极(Li-GO-En-Boc)进行研究时,与 GO 80 mAh g-1 相比,Li-GO-En-Boc 在电流密度为 25 mA g-1 时的稳定和可逆容量显著提高到 270 mA h g-1,而机械和化学稳定性却没有受到影响。通过 13C、7Li 和 6Li MAS NMR、XPS、IR、拉曼显微镜和密度泛函理论(DFT)计算,我们证实 Li+ 离子位于层间廊道的多个位点,从而提高了电化学性能。我们的研究结果表明,这些新型系统调制范德华间隙 GO 工程材料有望成为锂离子电池的高效阳极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Boosting Ethylene Yield via Synergistic 2D/0D Nanostructured VCu Layered Double Hydroxide/TiO2 Catalyst in Electrochemical CO2 Reduction Effective electrochemical water oxidation to H2O2 based on bimetallic Fe/Co metal-organic framework Open Circuit Voltage of an All-Vanadium Redox Flow Battery as a Function of the State of Charge obtained from UV-Vis Spectroscopy Back cover Ag-NiP Deposited Green Carbon Channels Embedded NiP Panels for Sustainable Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1