{"title":"Stability of dual solutions in aqueous Ti-alloy nanofluid with thermal radiation effect","authors":"Har Lal Saran, C h RamReddy","doi":"10.1007/s12043-024-02775-6","DOIUrl":null,"url":null,"abstract":"<div><p>The current article has identified dual solutions and their stability for the Ti-alloy/water nanofluid over an exponentially shrinking sheet, while taking into consideration the presence of magnetic fields, radiation and thermal buoyancy forces. The Tiwari and Das model has been utilised to formulate mathematical equations, which have subsequently been transformed from partial differential equations to ordinary differential equations using suitable similarity transformations. The transformed equations have been solved using the shooting method incorporated with the Runge–Kutta technique. Through the application of these techniques, it has been ascertained that multiple solutions have emerged for this problem. To assess the stability of these solutions, the eigenvalue approach has been employed. The eigenvalue approach has revealed that only the first solution is physically viable in laboratory settings, while the second solution is not. The effects of radiation on temperature, skin friction, velocity and heat transfer rate have been elaborated upon in detail. Furthermore, flow separation points have been identified and the rationale behind the delay in flow separation has been expounded upon. Streamlined patterns have been drawn and explained to enhance our understanding of the fluid flow behaviour. Finally, it is worth noting that these types of studies have significant applications in the medical and aerospace industries.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02775-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The current article has identified dual solutions and their stability for the Ti-alloy/water nanofluid over an exponentially shrinking sheet, while taking into consideration the presence of magnetic fields, radiation and thermal buoyancy forces. The Tiwari and Das model has been utilised to formulate mathematical equations, which have subsequently been transformed from partial differential equations to ordinary differential equations using suitable similarity transformations. The transformed equations have been solved using the shooting method incorporated with the Runge–Kutta technique. Through the application of these techniques, it has been ascertained that multiple solutions have emerged for this problem. To assess the stability of these solutions, the eigenvalue approach has been employed. The eigenvalue approach has revealed that only the first solution is physically viable in laboratory settings, while the second solution is not. The effects of radiation on temperature, skin friction, velocity and heat transfer rate have been elaborated upon in detail. Furthermore, flow separation points have been identified and the rationale behind the delay in flow separation has been expounded upon. Streamlined patterns have been drawn and explained to enhance our understanding of the fluid flow behaviour. Finally, it is worth noting that these types of studies have significant applications in the medical and aerospace industries.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.