Artistic style decomposition for texture and shape editing

Max Reimann, Martin Büßemeyer, Benito Buchheim, Amir Semmo, Jürgen Döllner, Matthias Trapp
{"title":"Artistic style decomposition for texture and shape editing","authors":"Max Reimann, Martin Büßemeyer, Benito Buchheim, Amir Semmo, Jürgen Döllner, Matthias Trapp","doi":"10.1007/s00371-024-03521-0","DOIUrl":null,"url":null,"abstract":"<p>While methods for generative image synthesis and example-based stylization produce impressive results, their black-box style representation intertwines shape, texture, and color aspects, limiting precise stylistic control and editing of artistic images. We introduce a novel method for decomposing the style of an artistic image that enables interactive geometric shape abstraction and texture control. We spatially decompose the input image into geometric shapes and an overlaying parametric texture representation, facilitating independent manipulation of color and texture. The parameters in this texture representation, comprising the image’s high-frequency details, control painterly attributes in a series of differentiable stylization filters. Shape decomposition is achieved using either segmentation or stroke-based neural rendering techniques. We demonstrate that our shape and texture decoupling enables diverse stylistic edits, including adjustments in shape, stroke, and painterly attributes such as contours and surface relief. Moreover, we demonstrate shape and texture style transfer in the parametric space using both reference images and text prompts and accelerate these by training networks for single- and arbitrary-style parameter prediction.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03521-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While methods for generative image synthesis and example-based stylization produce impressive results, their black-box style representation intertwines shape, texture, and color aspects, limiting precise stylistic control and editing of artistic images. We introduce a novel method for decomposing the style of an artistic image that enables interactive geometric shape abstraction and texture control. We spatially decompose the input image into geometric shapes and an overlaying parametric texture representation, facilitating independent manipulation of color and texture. The parameters in this texture representation, comprising the image’s high-frequency details, control painterly attributes in a series of differentiable stylization filters. Shape decomposition is achieved using either segmentation or stroke-based neural rendering techniques. We demonstrate that our shape and texture decoupling enables diverse stylistic edits, including adjustments in shape, stroke, and painterly attributes such as contours and surface relief. Moreover, we demonstrate shape and texture style transfer in the parametric space using both reference images and text prompts and accelerate these by training networks for single- and arbitrary-style parameter prediction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
艺术风格分解,用于纹理和形状编辑
虽然生成式图像合成和基于示例的风格化方法能产生令人印象深刻的结果,但其黑盒风格表示法将形状、纹理和颜色方面交织在一起,限制了对艺术图像的精确风格控制和编辑。我们介绍了一种分解艺术图像风格的新方法,该方法可实现交互式几何形状抽象和纹理控制。我们将输入图像在空间上分解为几何形状和叠加的参数化纹理表示,从而方便对色彩和纹理进行独立操作。纹理表示中的参数包括图像的高频细节,可在一系列可微调的风格化过滤器中控制绘画属性。形状分解是通过分割或基于笔触的神经渲染技术实现的。我们证明,我们的形状和纹理解耦技术可实现多种风格编辑,包括形状、笔触和绘画属性(如轮廓和表面浮雕)的调整。此外,我们还利用参考图像和文本提示演示了参数空间中的形状和纹理风格转移,并通过训练网络进行单一和任意风格参数预测来加速这些转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deepfake detection with enhanced Resnet-18 and multilayer CNN max pooling Video-driven musical composition using large language model with memory-augmented state space 3D human pose estimation using spatiotemporal hypergraphs and its public benchmark on opera videos Topological structure extraction for computing surface–surface intersection curves Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1