Multi-granularity hypergraph-guided transformer learning framework for visual classification

Jianjian Jiang, Ziwei Chen, Fangyuan Lei, Long Xu, Jiahao Huang, Xiaochen Yuan
{"title":"Multi-granularity hypergraph-guided transformer learning framework for visual classification","authors":"Jianjian Jiang, Ziwei Chen, Fangyuan Lei, Long Xu, Jiahao Huang, Xiaochen Yuan","doi":"10.1007/s00371-024-03541-w","DOIUrl":null,"url":null,"abstract":"<p>Fine-grained single-label classification tasks aim to distinguish highly similar categories but often overlook inter-category relationships. Hierarchical multi-granularity visual classification strives to categorize image labels at various hierarchy levels, offering optimize label selection for people. This paper addresses the hierarchical multi-granularity classification problem from two perspectives: (1) effective utilization of labels at different levels and (2) efficient learning to distinguish multi-granularity visual features. To tackle these issues, we propose a novel multi-granularity hypergraph-guided transformer learning framework (MHTL), seamlessly integrating swin transformers and hypergraph neural networks for handling visual classification tasks. Firstly, we employ swin transformer as an image hierarchical feature learning (IHFL) module to capture hierarchical features. Secondly, a feature reassemble (FR) module is applied to rearrange features at different hierarchy levels, creating a spectrum of features from coarse to fine-grained. Thirdly, we propose a feature relationship mining (FRM) module, to unveil the correlation between features at different granularity. Within this module, we introduce a learnable hypergraph modeling method to construct coarse to fine-grained hypergraph structures. Simultaneously, multi-granularity hypergraph neural networks are employed to explore grouping relationships across different granularities, thereby enhancing the learning of semantic feature representations. Finally, we adopt a multi-granularity classifier (MC) to predict hierarchical label probabilities. Experimental results demonstrate that MHTL outperforms other state-of-the-art classification methods across three multi-granularity datasets. The source code and models are released at https://github.com/JJJTF/MHTL.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03541-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fine-grained single-label classification tasks aim to distinguish highly similar categories but often overlook inter-category relationships. Hierarchical multi-granularity visual classification strives to categorize image labels at various hierarchy levels, offering optimize label selection for people. This paper addresses the hierarchical multi-granularity classification problem from two perspectives: (1) effective utilization of labels at different levels and (2) efficient learning to distinguish multi-granularity visual features. To tackle these issues, we propose a novel multi-granularity hypergraph-guided transformer learning framework (MHTL), seamlessly integrating swin transformers and hypergraph neural networks for handling visual classification tasks. Firstly, we employ swin transformer as an image hierarchical feature learning (IHFL) module to capture hierarchical features. Secondly, a feature reassemble (FR) module is applied to rearrange features at different hierarchy levels, creating a spectrum of features from coarse to fine-grained. Thirdly, we propose a feature relationship mining (FRM) module, to unveil the correlation between features at different granularity. Within this module, we introduce a learnable hypergraph modeling method to construct coarse to fine-grained hypergraph structures. Simultaneously, multi-granularity hypergraph neural networks are employed to explore grouping relationships across different granularities, thereby enhancing the learning of semantic feature representations. Finally, we adopt a multi-granularity classifier (MC) to predict hierarchical label probabilities. Experimental results demonstrate that MHTL outperforms other state-of-the-art classification methods across three multi-granularity datasets. The source code and models are released at https://github.com/JJJTF/MHTL.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于视觉分类的多粒度超图引导变换器学习框架
精细的单标签分类任务旨在区分高度相似的类别,但往往忽略了类别间的关系。分层多粒度视觉分类致力于将图像标签按不同层次进行分类,为人们提供最优化的标签选择。本文从两个方面探讨了分层多粒度分类问题:(1) 有效利用不同层次的标签;(2) 高效学习区分多粒度视觉特征。为了解决这些问题,我们提出了一种新颖的多粒度超图引导变换器学习框架(MHTL),无缝集成了swin变换器和超图神经网络来处理视觉分类任务。首先,我们采用swin变换器作为图像分层特征学习(IHFL)模块来捕捉分层特征。其次,应用特征重组合(FR)模块重新排列不同层次的特征,创建从粗粒度到细粒度的特征谱。第三,我们提出了一个特征关系挖掘(FRM)模块,以揭示不同粒度特征之间的相关性。在该模块中,我们引入了一种可学习的超图建模方法,以构建从粗粒度到细粒度的超图结构。同时,我们采用多粒度超图神经网络来探索不同粒度的分组关系,从而加强语义特征表征的学习。最后,我们采用多粒度分类器(MC)来预测分层标签概率。实验结果表明,MHTL 在三个多粒度数据集上的表现优于其他最先进的分类方法。源代码和模型发布于 https://github.com/JJJTF/MHTL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deepfake detection with enhanced Resnet-18 and multilayer CNN max pooling Video-driven musical composition using large language model with memory-augmented state space 3D human pose estimation using spatiotemporal hypergraphs and its public benchmark on opera videos Topological structure extraction for computing surface–surface intersection curves Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1