C. M. Vidhya, Yogita Maithani, Sakshi Kapoor, J. P. Singh
{"title":"Laser-induced graphene-coated wearable smart textile electrodes for biopotentials signal monitoring","authors":"C. M. Vidhya, Yogita Maithani, Sakshi Kapoor, J. P. Singh","doi":"10.1007/s11706-024-0680-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes how to produce a wearable dry electrode at a reasonable cost and how to use it for the monitoring of biopotentials in electrocardiography. Smart textiles in wearable technologies have made a great advancement in the health care management and living standards of humans. Graphene was manufactured using the low-cost single-step process, laser ablation of polyimide, a commercial polymer. Graphene dispersions were made using solvent isopropyl alcohol which has low boiling point, nontoxicity, and environmental friendliness. After successive coating of the graphene dispersion on the cotton fabric to make it conductive, the sheet resistance of the resulting fabric dropped to 3% of its initial value. The laser-induced graphene (LIG) cotton dry electrodes thus manufactured are comparable to Ag/AgCl wet electrodes in terms of the skin-to-electrode impedance, measuring between 78.0 and 7.2 kΩ for the frequency between 40 Hz and 1 kHz. The LIG cotton electrode displayed a signal-to-noise ratio of 20.17 dB. Due to its comfort, simplicity, and good performance over a longer period of time, the textile electrode appears suited for medical applications.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0680-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes how to produce a wearable dry electrode at a reasonable cost and how to use it for the monitoring of biopotentials in electrocardiography. Smart textiles in wearable technologies have made a great advancement in the health care management and living standards of humans. Graphene was manufactured using the low-cost single-step process, laser ablation of polyimide, a commercial polymer. Graphene dispersions were made using solvent isopropyl alcohol which has low boiling point, nontoxicity, and environmental friendliness. After successive coating of the graphene dispersion on the cotton fabric to make it conductive, the sheet resistance of the resulting fabric dropped to 3% of its initial value. The laser-induced graphene (LIG) cotton dry electrodes thus manufactured are comparable to Ag/AgCl wet electrodes in terms of the skin-to-electrode impedance, measuring between 78.0 and 7.2 kΩ for the frequency between 40 Hz and 1 kHz. The LIG cotton electrode displayed a signal-to-noise ratio of 20.17 dB. Due to its comfort, simplicity, and good performance over a longer period of time, the textile electrode appears suited for medical applications.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.