Graph Neural Networks in Histopathology: Emerging Trends and Future Directions

Siemen Brussee, Giorgio Buzzanca, Anne M. R. Schrader, Jesper Kers
{"title":"Graph Neural Networks in Histopathology: Emerging Trends and Future Directions","authors":"Siemen Brussee, Giorgio Buzzanca, Anne M. R. Schrader, Jesper Kers","doi":"arxiv-2406.12808","DOIUrl":null,"url":null,"abstract":"Histopathological analysis of Whole Slide Images (WSIs) has seen a surge in\nthe utilization of deep learning methods, particularly Convolutional Neural\nNetworks (CNNs). However, CNNs often fall short in capturing the intricate\nspatial dependencies inherent in WSIs. Graph Neural Networks (GNNs) present a\npromising alternative, adept at directly modeling pairwise interactions and\neffectively discerning the topological tissue and cellular structures within\nWSIs. Recognizing the pressing need for deep learning techniques that harness\nthe topological structure of WSIs, the application of GNNs in histopathology\nhas experienced rapid growth. In this comprehensive review, we survey GNNs in\nhistopathology, discuss their applications, and exploring emerging trends that\npave the way for future advancements in the field. We begin by elucidating the\nfundamentals of GNNs and their potential applications in histopathology.\nLeveraging quantitative literature analysis, we identify four emerging trends:\nHierarchical GNNs, Adaptive Graph Structure Learning, Multimodal GNNs, and\nHigher-order GNNs. Through an in-depth exploration of these trends, we offer\ninsights into the evolving landscape of GNNs in histopathological analysis.\nBased on our findings, we propose future directions to propel the field\nforward. Our analysis serves to guide researchers and practitioners towards\ninnovative approaches and methodologies, fostering advancements in\nhistopathological analysis through the lens of graph neural networks.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.12808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Histopathological analysis of Whole Slide Images (WSIs) has seen a surge in the utilization of deep learning methods, particularly Convolutional Neural Networks (CNNs). However, CNNs often fall short in capturing the intricate spatial dependencies inherent in WSIs. Graph Neural Networks (GNNs) present a promising alternative, adept at directly modeling pairwise interactions and effectively discerning the topological tissue and cellular structures within WSIs. Recognizing the pressing need for deep learning techniques that harness the topological structure of WSIs, the application of GNNs in histopathology has experienced rapid growth. In this comprehensive review, we survey GNNs in histopathology, discuss their applications, and exploring emerging trends that pave the way for future advancements in the field. We begin by elucidating the fundamentals of GNNs and their potential applications in histopathology. Leveraging quantitative literature analysis, we identify four emerging trends: Hierarchical GNNs, Adaptive Graph Structure Learning, Multimodal GNNs, and Higher-order GNNs. Through an in-depth exploration of these trends, we offer insights into the evolving landscape of GNNs in histopathological analysis. Based on our findings, we propose future directions to propel the field forward. Our analysis serves to guide researchers and practitioners towards innovative approaches and methodologies, fostering advancements in histopathological analysis through the lens of graph neural networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组织病理学中的图神经网络:新趋势和未来方向
对整张切片图像(WSI)进行组织病理学分析时,深度学习方法,尤其是卷积神经网络(CNN)的使用激增。然而,CNN 通常无法捕捉到 WSI 中固有的错综复杂的局部依赖关系。图神经网络(GNN)是一种很好的替代方案,它善于直接模拟成对的相互作用,并能有效辨别 WSIs 中的拓扑组织和细胞结构。由于认识到对利用 WSI 拓扑结构的深度学习技术的迫切需要,GNN 在组织病理学中的应用经历了快速增长。在这篇综述中,我们对组织病理学中的 GNN 进行了调查,讨论了它们的应用,并探讨了为该领域未来发展铺平道路的新兴趋势。我们首先阐明了 GNN 的基本原理及其在组织病理学中的潜在应用。通过定量文献分析,我们确定了四种新兴趋势:分层 GNN、自适应图结构学习、多模态 GNN 和高阶 GNN。通过对这些趋势的深入探讨,我们深入了解了组织病理学分析中 GNN 的发展状况。我们的分析有助于引导研究人员和从业人员采用创新的方法和手段,通过图神经网络的视角促进组织病理学分析的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1