Kun Wang, Haolei Bai, Cheng Zhang, Chunxiao Sun, Shuyang Sang, Yuechen Li, Zekun Chen, Jia’nan Hu, Xiaojun Li, Lei Meng and Yongfang Li
{"title":"Employing a similar acceptor material as the third component to enhance the performance of organic solar cells†","authors":"Kun Wang, Haolei Bai, Cheng Zhang, Chunxiao Sun, Shuyang Sang, Yuechen Li, Zekun Chen, Jia’nan Hu, Xiaojun Li, Lei Meng and Yongfang Li","doi":"10.1039/D4YA00304G","DOIUrl":null,"url":null,"abstract":"<p >We synthesized two derivatives of Y6, namely Y-TNF and Y-TN. Compared to Y6, these two derivatives possess fluorinated and non-fluorinated extended terminal groups, respectively. Y-TNF exhibits a red-shifted absorption compared to Y-TN, a narrower bandgap, and a better matched energy level to the donor material PM6. Hence, Y-TNF demonstrates better photovoltaic performance. The incorporation of Y-TN further enhances the photovoltaic performance of binary PM6:Y-TNF devices due to its good compatibility and intermolecular interactions with Y-TNF, resulting in improved charge transport and reduced non-radiative energy loss. The ternary organic solar cells (OSCs) offer a higher device efficiency of 16.63% with a high open-circuit voltage of 0.857 V, a high short-circuit current density of 25.84 mA cm<small><sup>−2</sup></small>, and a high fill factor of 75.10%. The results show that incorporating a similar acceptor material as the third component is an effective strategy to enhance the performance of OSCs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 8","pages":" 1948-1955"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00304g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00304g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We synthesized two derivatives of Y6, namely Y-TNF and Y-TN. Compared to Y6, these two derivatives possess fluorinated and non-fluorinated extended terminal groups, respectively. Y-TNF exhibits a red-shifted absorption compared to Y-TN, a narrower bandgap, and a better matched energy level to the donor material PM6. Hence, Y-TNF demonstrates better photovoltaic performance. The incorporation of Y-TN further enhances the photovoltaic performance of binary PM6:Y-TNF devices due to its good compatibility and intermolecular interactions with Y-TNF, resulting in improved charge transport and reduced non-radiative energy loss. The ternary organic solar cells (OSCs) offer a higher device efficiency of 16.63% with a high open-circuit voltage of 0.857 V, a high short-circuit current density of 25.84 mA cm−2, and a high fill factor of 75.10%. The results show that incorporating a similar acceptor material as the third component is an effective strategy to enhance the performance of OSCs.