{"title":"Restoring cosmological concordance with axion-like early dark energy and dark matter characterized by a constant equation of state?","authors":"Yan-Hong Yao and Xin-He Meng","doi":"10.1088/1572-9494/ad426e","DOIUrl":null,"url":null,"abstract":"The Hubble tension persists as a challenge in cosmology. Even early dark energy (EDE) models, initially considered the most promising for alleviating the Hubble tension, fall short of addressing the issue without exacerbating other tensions, such as the S8 tension. Considering that a negative dark matter (DM) equation of state (EoS) parameter is conducive to reduce the value of the σ8 parameter, we extend the axion-like EDE model in this paper by replacing the cold dark matter (CDM) with DM characterized by a constant EoS wdm (referred to as WDM hereafter). We then impose constraints on this axion-like EDE extension model, along with three other models: the axion-like EDE model, ΛWDM, and ΛCDM. These constraints are derived from a comprehensive analysis incorporating data from the Planck 2018 cosmic microwave background, baryon acoustic oscillations, and the Pantheon compilation, as well as a prior on H0 (i.e. H0 = 73.04 ± 1.04, based on the latest local measurement by Riess et al) and a Gaussianized prior on S8 (i.e. S8 = 0.766 ± 0.017, determined through the joint analysis of KID1000+BOSS+2dLenS). We find that although the new model maintains the ability to alleviate the Hubble tension to ∼1.4σ, it still exacerbates the S8 tension to a level similar to that of the axion-like EDE model.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad426e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Hubble tension persists as a challenge in cosmology. Even early dark energy (EDE) models, initially considered the most promising for alleviating the Hubble tension, fall short of addressing the issue without exacerbating other tensions, such as the S8 tension. Considering that a negative dark matter (DM) equation of state (EoS) parameter is conducive to reduce the value of the σ8 parameter, we extend the axion-like EDE model in this paper by replacing the cold dark matter (CDM) with DM characterized by a constant EoS wdm (referred to as WDM hereafter). We then impose constraints on this axion-like EDE extension model, along with three other models: the axion-like EDE model, ΛWDM, and ΛCDM. These constraints are derived from a comprehensive analysis incorporating data from the Planck 2018 cosmic microwave background, baryon acoustic oscillations, and the Pantheon compilation, as well as a prior on H0 (i.e. H0 = 73.04 ± 1.04, based on the latest local measurement by Riess et al) and a Gaussianized prior on S8 (i.e. S8 = 0.766 ± 0.017, determined through the joint analysis of KID1000+BOSS+2dLenS). We find that although the new model maintains the ability to alleviate the Hubble tension to ∼1.4σ, it still exacerbates the S8 tension to a level similar to that of the axion-like EDE model.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.