Non-quadratic Euclidean Complete Affine Maximal Type Hypersurfaces for $$\theta \in (0,(N-1)/N]$$

Shi-Zhong Du
{"title":"Non-quadratic Euclidean Complete Affine Maximal Type Hypersurfaces for $$\\theta \\in (0,(N-1)/N]$$","authors":"Shi-Zhong Du","doi":"10.1007/s12220-024-01678-7","DOIUrl":null,"url":null,"abstract":"<p>Bernstein problem for affine maximal type equation </p><span>$$\\begin{aligned} u^{ij}D_{ij}w=0, \\ \\ w\\equiv [\\det D^2u]^{-\\theta },\\ \\ \\forall x\\in \\Omega \\subset {\\mathbb {R}}^N \\end{aligned}$$</span>(0.1)<p>has been a core problem in affine geometry. A conjecture (Version I in Section 1) initially proposed by Chern (Proc. Japan-United States Sem., Tokyo, 1977, 17-30) for entire graph with <span>\\(N=2, \\theta =3/4\\)</span> and then was strengthened by Trudinger-Wang (Invent. Math., <b>140</b>, 2000, 399-422) to its full generality (Version II), which asserts that any Euclidean complete, affine maximal, locally uniformly convex <span>\\(C^4\\)</span>-hypersurface in <span>\\({\\mathbb {R}}^{N+1}\\)</span> must be an elliptic paraboloid. At the same time, the Chern’s conjecture was solved completely by Trudinger-Wang in dimension two. Soon after, the Affine Bernstein Conjecture (Version III) for affine complete affine maximal hypersurfaces was also shown by Trudinger-Wang in (Invent. Math., <b>150</b>, 2002, 45-60). Thereafter, the Bernstein problem has morphed into a broader conjectures for any dimension <span>\\(N\\ge 2\\)</span> and any positive constant <span>\\(\\theta &gt;0\\)</span>. The Bernstein theorem of Trudinger-Wang was then generalized by Li-Jia (Results Math., <b>56</b> 2009, 109-139) to <span>\\(N=2, \\theta \\in (3/4,1]\\)</span> (see also Zhou (Calc. Var. PDEs., <b>43</b> 2012, 25-44) for a different proof). In the past twenty years, much effort was done toward higher dimensional issues but not really successful yet, even for the case of dimension <span>\\(N=3\\)</span>. Recently, counter examples were found in (J. Differential Equations, <b>269</b> (2020), 7429-7469), toward the Full Bernstein Problem IV for <span>\\(N\\ge 3,\\theta \\in (1/2,(N-1)/N)\\)</span> and using a much more complicated argument. In this paper, we will construct explicitly various new Euclidean complete affine maximal type hypersurfaces which are not elliptic paraboloid for the improved range </p><span>$$\\begin{aligned} N\\ge 2, \\ \\ \\theta \\in (0,(N-1)/N]. \\end{aligned}$$</span>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01678-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bernstein problem for affine maximal type equation

$$\begin{aligned} u^{ij}D_{ij}w=0, \ \ w\equiv [\det D^2u]^{-\theta },\ \ \forall x\in \Omega \subset {\mathbb {R}}^N \end{aligned}$$(0.1)

has been a core problem in affine geometry. A conjecture (Version I in Section 1) initially proposed by Chern (Proc. Japan-United States Sem., Tokyo, 1977, 17-30) for entire graph with \(N=2, \theta =3/4\) and then was strengthened by Trudinger-Wang (Invent. Math., 140, 2000, 399-422) to its full generality (Version II), which asserts that any Euclidean complete, affine maximal, locally uniformly convex \(C^4\)-hypersurface in \({\mathbb {R}}^{N+1}\) must be an elliptic paraboloid. At the same time, the Chern’s conjecture was solved completely by Trudinger-Wang in dimension two. Soon after, the Affine Bernstein Conjecture (Version III) for affine complete affine maximal hypersurfaces was also shown by Trudinger-Wang in (Invent. Math., 150, 2002, 45-60). Thereafter, the Bernstein problem has morphed into a broader conjectures for any dimension \(N\ge 2\) and any positive constant \(\theta >0\). The Bernstein theorem of Trudinger-Wang was then generalized by Li-Jia (Results Math., 56 2009, 109-139) to \(N=2, \theta \in (3/4,1]\) (see also Zhou (Calc. Var. PDEs., 43 2012, 25-44) for a different proof). In the past twenty years, much effort was done toward higher dimensional issues but not really successful yet, even for the case of dimension \(N=3\). Recently, counter examples were found in (J. Differential Equations, 269 (2020), 7429-7469), toward the Full Bernstein Problem IV for \(N\ge 3,\theta \in (1/2,(N-1)/N)\) and using a much more complicated argument. In this paper, we will construct explicitly various new Euclidean complete affine maximal type hypersurfaces which are not elliptic paraboloid for the improved range

$$\begin{aligned} N\ge 2, \ \ \theta \in (0,(N-1)/N]. \end{aligned}$$
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$$\theta \ in (0,(N-1)/N]$$ 的非四边形欧几里得完全仿射最大类型超曲面
对于仿射最大类型方程 $$begin{aligned} u^{ij}D_{ij}w=0, \ w\equiv [\det D^2u]^{-\theta },\\forall x\in \Omega \subset {\mathbb {R}}^N \end{aligned}$(0.1)has been a core problem in affine geometry.Chern (Proc. Japan-United States Sem., Tokyo, 1977, 17-30) 最初提出的一个猜想(第 1 节中的版本一)适用于具有 \(N=2, \theta =3/4/\)的全图,随后被 Trudinger-Wang (Invent. Math、140,2000,399-422)加强了它的全部一般性(第二版),断言在 \({\mathbb {R}}^{N+1}\) 中任何欧几里得完整的、仿射最大的、局部均匀凸的\(C^4\)-超曲面必须是一个椭圆抛物面。与此同时,特鲁丁格-王(Trudinger-Wang)在二维中彻底解决了车恩猜想。不久之后,特鲁丁格-王又在 (Invent. Math., 150, 2002, 45-60) 中证明了仿射完全仿射最大超曲面的仿射伯恩斯坦猜想(第三版)。此后,伯恩斯坦问题演变成了对任意维数(N\ge 2\)和任意正常数(\theta >0\)的更广泛猜想。特鲁丁格-王的伯恩斯坦定理随后被李嘉(Results Math.在过去的二十年里,人们在高维问题上做了很多努力,但还没有真正成功,甚至对于维数 \(N=3\) 的情况也是如此。最近,我们在《微分方程学报》(J. Differential Equations, 269 (2020), 7429-7469)上发现了反例,针对的是 \(N\ge 3,\theta \in (1/2,(N-1)/N)\) 的全伯恩斯坦问题四,并且使用了更为复杂的论证。在本文中,我们将为改进范围 $$\begin{aligned} 明确构造各种新的欧几里得完全仿射最大类型超曲面,它们都不是椭圆抛物面。Nge 2, \ \theta \ in (0,(N-1)/N].\end{aligned}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Singular p(x)-Laplace Equations with Lower-Order Terms and a Hardy Potential Radial Positive Solutions for Semilinear Elliptic Problems with Linear Gradient Term in $$\mathbb {R}^N$$ Existence and Uniqueness of Limits at Infinity for Bounded Variation Functions The Projectivity of Compact Kähler Manifolds with Mixed Curvature Condition Brunn–Minkowski Inequalities for Sprays on Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1