Alexandra Kjuchukova, Allison Miller, Arunima Ray, Sümeyra Sakallı
{"title":"Slicing knots in definite 4-manifolds","authors":"Alexandra Kjuchukova, Allison Miller, Arunima Ray, Sümeyra Sakallı","doi":"10.1090/tran/9151","DOIUrl":null,"url":null,"abstract":"<p>We study the <italic><inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing number</italic> of knots, i.e. the smallest <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 0\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m\\geq 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that a knot <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K subset-of-or-equal-to upper S cubed\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K\\subseteq S^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bounds a properly embedded, null-homologous disk in a punctured connected sum <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis number-sign Superscript m Baseline double-struck upper C double-struck upper P squared right-parenthesis Superscript times\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi mathvariant=\"normal\">#</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>×</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\#^m\\mathbb {CP}^2)^{\\times }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We find knots for which the smooth and topological <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing numbers are both finite, nonzero, and distinct. To do this, we give a lower bound on the smooth <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing number of a knot in terms of its double branched cover and an upper bound on the topological <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing number in terms of the Seifert form.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9151","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the CP2\mathbb {CP}^2-slicing number of knots, i.e. the smallest m≥0m\geq 0 such that a knot K⊆S3K\subseteq S^3 bounds a properly embedded, null-homologous disk in a punctured connected sum (#mCP2)×(\#^m\mathbb {CP}^2)^{\times }. We find knots for which the smooth and topological CP2\mathbb {CP}^2-slicing numbers are both finite, nonzero, and distinct. To do this, we give a lower bound on the smooth CP2\mathbb {CP}^2-slicing number of a knot in terms of its double branched cover and an upper bound on the topological CP2\mathbb {CP}^2-slicing number in terms of the Seifert form.
我们研究了结的 C P 2 \mathbb {CP}^2 -切片数,即最小的 m ≥ 0 m\geq 0,使得结 K ⊆ S 3 K\subseteq S^3 在一个穿刺连通和 ( # m C P 2 ) × (\#^m\mathbb {CP}^2)^{times } 中绑定一个适当嵌入的、空同源的圆盘。我们要找到光滑的和拓扑的 C P 2 (mathbb {CP}^2 )切片数都是有限的、非零的和不同的结。为此,我们用一个结的双支盖给出了它的光滑 C P 2 \mathbb {CP}^2 -切片数的下限,用塞弗特形式给出了它的拓扑 C P 2 \mathbb {CP}^2 -切片数的上限。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.