{"title":"An empirical study of fault localization in Python programs","authors":"Mohammad Rezaalipour, Carlo A. Furia","doi":"10.1007/s10664-024-10475-3","DOIUrl":null,"url":null,"abstract":"<p>Despite its massive popularity as a programming language, especially in novel domains like data science programs, there is comparatively little research about fault localization that targets Python. Even though it is plausible that several findings about programming languages like C/C++ and Java—the most common choices for fault localization research—carry over to other languages, whether the dynamic nature of Python and how the language is used in practice affect the capabilities of classic fault localization approaches remain open questions to investigate. This paper is the first multi-family large-scale empirical study of fault localization on real-world Python programs and faults. Using Zou et al.’s recent large-scale empirical study of fault localization in Java (Zou et al. 2021) as the basis of our study, we investigated the effectiveness (i.e., localization accuracy), efficiency (i.e., runtime performance), and other features (e.g., different entity granularities) of seven well-known fault-localization techniques in four families (spectrum-based, mutation-based, predicate switching, and stack-trace based) on 135 faults from 13 open-source Python projects from the <span>BugsInPy</span> curated collection (Widyasari et al. 2020). The results replicate for Python several results known about Java, and shed light on whether Python’s peculiarities affect the capabilities of fault localization. The replication package that accompanies this paper includes detailed data about our experiments, as well as the tool <span>FauxPy</span> that we implemented to conduct the study.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"68 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10664-024-10475-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Despite its massive popularity as a programming language, especially in novel domains like data science programs, there is comparatively little research about fault localization that targets Python. Even though it is plausible that several findings about programming languages like C/C++ and Java—the most common choices for fault localization research—carry over to other languages, whether the dynamic nature of Python and how the language is used in practice affect the capabilities of classic fault localization approaches remain open questions to investigate. This paper is the first multi-family large-scale empirical study of fault localization on real-world Python programs and faults. Using Zou et al.’s recent large-scale empirical study of fault localization in Java (Zou et al. 2021) as the basis of our study, we investigated the effectiveness (i.e., localization accuracy), efficiency (i.e., runtime performance), and other features (e.g., different entity granularities) of seven well-known fault-localization techniques in four families (spectrum-based, mutation-based, predicate switching, and stack-trace based) on 135 faults from 13 open-source Python projects from the BugsInPy curated collection (Widyasari et al. 2020). The results replicate for Python several results known about Java, and shed light on whether Python’s peculiarities affect the capabilities of fault localization. The replication package that accompanies this paper includes detailed data about our experiments, as well as the tool FauxPy that we implemented to conduct the study.
期刊介绍:
Empirical Software Engineering provides a forum for applied software engineering research with a strong empirical component, and a venue for publishing empirical results relevant to both researchers and practitioners. Empirical studies presented here usually involve the collection and analysis of data and experience that can be used to characterize, evaluate and reveal relationships between software development deliverables, practices, and technologies. Over time, it is expected that such empirical results will form a body of knowledge leading to widely accepted and well-formed theories.
The journal also offers industrial experience reports detailing the application of software technologies - processes, methods, or tools - and their effectiveness in industrial settings.
Empirical Software Engineering promotes the publication of industry-relevant research, to address the significant gap between research and practice.