Transfer of hexagonal boron nitride quantum emitters onto arbitrary substrates with zero thermal budget

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY APL Materials Pub Date : 2024-07-02 DOI:10.1063/5.0218367
Dante J. O’Hara, Hsun-Jen Chuang, Kathleen M. McCreary, Mehmet A. Noyan, Sung-Joon Lee, Enrique D. Cobas, Berend T. Jonker
{"title":"Transfer of hexagonal boron nitride quantum emitters onto arbitrary substrates with zero thermal budget","authors":"Dante J. O’Hara, Hsun-Jen Chuang, Kathleen M. McCreary, Mehmet A. Noyan, Sung-Joon Lee, Enrique D. Cobas, Berend T. Jonker","doi":"10.1063/5.0218367","DOIUrl":null,"url":null,"abstract":"The van der Waals material hexagonal boron nitride (hBN) has emerged as a promising candidate for hosting room temperature single-photon emitters (SPEs) for next-generation quantum technologies. However, the requirement of a high temperature anneal (850 °C or higher) to activate the SPEs in hBN makes it difficult to integrate into hybrid structures that cannot tolerate such temperatures, including all silicon-based circuits. In this work, we present a method to deterministically activate quantum emitters in multilayered hBN on a process substrate, followed by a zero thermal budget transfer to a target substrate. This technique does not lead to any degradation or loss of photon purity in the hBN emitters and provides a procedure for combining high-purity emitters with other exciting photonic, magnetic, or electrical properties to explore new physical phenomena. The ability to transfer hBN emitters onto arbitrary substrates creates new technological possibilities to incorporate these quantum photonic properties into photonic integrated circuits and plasmonic devices.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0218367","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The van der Waals material hexagonal boron nitride (hBN) has emerged as a promising candidate for hosting room temperature single-photon emitters (SPEs) for next-generation quantum technologies. However, the requirement of a high temperature anneal (850 °C or higher) to activate the SPEs in hBN makes it difficult to integrate into hybrid structures that cannot tolerate such temperatures, including all silicon-based circuits. In this work, we present a method to deterministically activate quantum emitters in multilayered hBN on a process substrate, followed by a zero thermal budget transfer to a target substrate. This technique does not lead to any degradation or loss of photon purity in the hBN emitters and provides a procedure for combining high-purity emitters with other exciting photonic, magnetic, or electrical properties to explore new physical phenomena. The ability to transfer hBN emitters onto arbitrary substrates creates new technological possibilities to incorporate these quantum photonic properties into photonic integrated circuits and plasmonic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将六方氮化硼量子发射器转移到零热预算的任意基底上
范德瓦耳斯材料六方氮化硼(hBN)已成为承载室温单光子发射器(SPE)的理想候选材料,可用于下一代量子技术。然而,由于需要高温退火(850 ℃ 或更高)才能激活氮化硼中的单光子发射器,因此很难将其集成到无法耐受这种温度的混合结构中,包括所有硅基电路。在这项工作中,我们提出了一种方法,可在工艺基底上确定性地激活多层氢化硼中的量子发射器,然后将零热预算转移到目标基底上。这种技术不会导致 hBN 发射器中的光子纯度发生任何退化或损失,并提供了一种将高纯度发射器与其他令人兴奋的光子、磁性或电学特性相结合的程序,以探索新的物理现象。将 hBN 发射器转移到任意基底上的能力为将这些量子光子特性融入光子集成电路和等离子器件创造了新的技术可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
期刊最新文献
Energy harvesting and human motion sensing of a 2D piezoelectric hybrid organic–inorganic perovskite A first-principles study on structural stability and magnetoelectric coupling of two-dimensional BaTiO3 ultrathin film with Cr and Cu substituting Ti site Investigation of transverse exchange-springs in electrodeposited nano-heterostructured films through first-order reversal curve analysis Solid phase epitaxy of SrRuO3 encapsulated by SrTiO3 membranes Microgel-based etalon membranes: Characterization and properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1