{"title":"A general model of treeline form and dynamics","authors":"David Brown, Miroslav Kummel, Makayla McDevitt","doi":"10.1007/s12080-024-00583-7","DOIUrl":null,"url":null,"abstract":"<p>Treeline is a global ecological phenomenon in which tree populations decline, often abruptly, above a specific elevation or latitude. Temperature is thought to be a key determinant of treeline because it affects the rates at which trees establish, grow, produce seeds, and die. As climate change causes temperature increases, treelines have been observed to move in response—but there is considerable variability. In this study, we present a general mathematical model that provides possible explanations for both the general patterns observed in treelines and some of the variation. Avoiding system-specific details, our model assumes simply that all life processes are temperature-dependent. We incorporate the possibility of positive or negative feedback, in which the presence of trees either increases or decreases the temperature at their location. Our results indicate that this feedback and the relationship between temperature thresholds for growth, seed production, and seedling establishment are the key determinants of tree line form and movement. The model also shows that under many conditions bistability is predicted: treeline can equilibrate at two different elevations under the same conditions, depending on the system’s history. General, flexible models like ours are essential for generating a unifying theory of treeline form and dynamics across multiple ecosystems.</p>","PeriodicalId":51198,"journal":{"name":"Theoretical Ecology","volume":"11 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12080-024-00583-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Treeline is a global ecological phenomenon in which tree populations decline, often abruptly, above a specific elevation or latitude. Temperature is thought to be a key determinant of treeline because it affects the rates at which trees establish, grow, produce seeds, and die. As climate change causes temperature increases, treelines have been observed to move in response—but there is considerable variability. In this study, we present a general mathematical model that provides possible explanations for both the general patterns observed in treelines and some of the variation. Avoiding system-specific details, our model assumes simply that all life processes are temperature-dependent. We incorporate the possibility of positive or negative feedback, in which the presence of trees either increases or decreases the temperature at their location. Our results indicate that this feedback and the relationship between temperature thresholds for growth, seed production, and seedling establishment are the key determinants of tree line form and movement. The model also shows that under many conditions bistability is predicted: treeline can equilibrate at two different elevations under the same conditions, depending on the system’s history. General, flexible models like ours are essential for generating a unifying theory of treeline form and dynamics across multiple ecosystems.
期刊介绍:
Theoretical Ecology publishes innovative research in theoretical ecology, broadly defined. Papers should use theoretical approaches to answer questions of ecological interest and appeal to and be readable by a broad audience of ecologists. Work that uses mathematical, statistical, computational, or conceptual approaches is all welcomed, provided that the goal is to increase ecological understanding. Papers that only use existing approaches to analyze data, or are only mathematical analyses that do not further ecological understanding, are not appropriate. Work that bridges disciplinary boundaries, such as the intersection between quantitative social sciences and ecology, or physical influences on ecological processes, will also be particularly welcome.
All areas of theoretical ecology, including ecophysiology, population ecology, behavioral ecology, evolutionary ecology, ecosystem ecology, community ecology, and ecosystem and landscape ecology are all appropriate. Theoretical papers that focus on applied ecological questions are also of particular interest.