S-Block Metal Mg-Mediated Co─N─C as Efficient Oxygen Electrocatalyst for Durable and Temperature-Adapted Zn–Air Batteries

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-07-04 DOI:10.1002/advs.202403865
Henan Wang, Xinxin Niu, Wenxian Liu, Ruilian Yin, Jiale Dai, Wei Guo, Chao Kong, Lu Ma, Xia Ding, Fangfang Wu, Wenhui Shi, Tianqi Deng, Xiehong Cao
{"title":"S-Block Metal Mg-Mediated Co─N─C as Efficient Oxygen Electrocatalyst for Durable and Temperature-Adapted Zn–Air Batteries","authors":"Henan Wang,&nbsp;Xinxin Niu,&nbsp;Wenxian Liu,&nbsp;Ruilian Yin,&nbsp;Jiale Dai,&nbsp;Wei Guo,&nbsp;Chao Kong,&nbsp;Lu Ma,&nbsp;Xia Ding,&nbsp;Fangfang Wu,&nbsp;Wenhui Shi,&nbsp;Tianqi Deng,&nbsp;Xiehong Cao","doi":"10.1002/advs.202403865","DOIUrl":null,"url":null,"abstract":"<p>In the quest to enhance Zn–air batteries (ZABs) for operating across a wide spectrum of temperatures, synthesizing robust oxygen electrocatalysts is paramount. Conventional strategies focusing on orbital hybridization of <i>d</i>–<i>d</i> and <i>p</i>-<i>d</i> aim to moderate the excessive interaction between the <i>d</i>-band of the transition metal active site and oxygen intermediate, yet often yield suboptimal performance. Herein, an innovative <i>s</i>-block metal modulation is reported to refine the electronic structure and catalytic behavior of Co─NC catalysts. Employing density functional theory (DFT) calculations, it is revealed that incorporating Mg markedly depresses the <i>d</i>-band center of Co sites, thereby fine-tuning the adsorption energy of the oxygen reduction reaction (ORR) intermediate. Consequently, the Mg-modified Co─NC catalyst (MgCo─NC) unveils remarkable intrinsic ORR activity with a significantly reduced activation energy (<i>E</i>a) of 10.0 kJ mol<sup>−1</sup>, outstripping the performance of both Co─NC (17.6 kJ mol<sup>−1</sup>), benchmark Pt/C (15.9 kJ mol<sup>−1</sup>), and many recent reports. Moreover, ZABs outfitted with the finely tuned Mg<sub>0.1</sub>Co<sub>0.9</sub>─NC realize a formidable power density of 157.0 mW cm<sup>−2</sup>, paired with an extremely long cycle life of 1700 h, and an exceptionally minimal voltage gap decay rate of 0.006 mV h<sup>−1</sup>. Further, the Mg<sub>0.1</sub>Co<sub>0.9</sub>─NC-based flexible ZAB presents a mere 2% specific capacity degradation when the temperature fluctuates from 25 to −20 °C, underscoring its robustness and suitability for practical deployment in diverse environmental conditions.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 34","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202403865","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202403865","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the quest to enhance Zn–air batteries (ZABs) for operating across a wide spectrum of temperatures, synthesizing robust oxygen electrocatalysts is paramount. Conventional strategies focusing on orbital hybridization of dd and p-d aim to moderate the excessive interaction between the d-band of the transition metal active site and oxygen intermediate, yet often yield suboptimal performance. Herein, an innovative s-block metal modulation is reported to refine the electronic structure and catalytic behavior of Co─NC catalysts. Employing density functional theory (DFT) calculations, it is revealed that incorporating Mg markedly depresses the d-band center of Co sites, thereby fine-tuning the adsorption energy of the oxygen reduction reaction (ORR) intermediate. Consequently, the Mg-modified Co─NC catalyst (MgCo─NC) unveils remarkable intrinsic ORR activity with a significantly reduced activation energy (Ea) of 10.0 kJ mol−1, outstripping the performance of both Co─NC (17.6 kJ mol−1), benchmark Pt/C (15.9 kJ mol−1), and many recent reports. Moreover, ZABs outfitted with the finely tuned Mg0.1Co0.9─NC realize a formidable power density of 157.0 mW cm−2, paired with an extremely long cycle life of 1700 h, and an exceptionally minimal voltage gap decay rate of 0.006 mV h−1. Further, the Mg0.1Co0.9─NC-based flexible ZAB presents a mere 2% specific capacity degradation when the temperature fluctuates from 25 to −20 °C, underscoring its robustness and suitability for practical deployment in diverse environmental conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
S-Block Metal Mg-Mediated Co─N─C 作为高效氧气电催化剂,用于耐用且温度适应的锌-空气电池。
为了提高锌-空气电池(ZABs)的性能,使其能够在较宽的温度范围内工作,合成稳定的氧电催化剂至关重要。传统的策略侧重于 d-d 和 p-d 的轨道杂化,旨在缓和过渡金属活性位点的 d 波段与氧中间体之间的过度相互作用,但往往无法获得最佳性能。本文报告了一种创新的 s 块金属调制方法,以完善 Co─NC 催化剂的电子结构和催化行为。通过密度泛函理论(DFT)计算发现,掺入镁能显著降低钴位点的 d 带中心,从而微调氧还原反应(ORR)中间体的吸附能。因此,镁改性 Co─NC 催化剂(MgCo─NC)具有显著的内在 ORR 活性,活化能(Ea)显著降低至 10.0 kJ mol-1,超过了 Co─NC 催化剂(17.6 kJ mol-1)、基准 Pt/C 催化剂(15.9 kJ mol-1)和许多最新报道。此外,装有经过微调的 Mg0.1Co0.9─NC 的 ZAB 实现了 157.0 mW cm-2 的强大功率密度、1700 h 的超长循环寿命和 0.006 mV h-1 的超低电压间隙衰减率。此外,基于 Mg0.1Co0.9─NC 的柔性 ZAB 在温度从 25 ℃ 波动到 -20 ℃ 时的比容量衰减仅为 2%,这突出表明了它的坚固性和在不同环境条件下的实际应用的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Smart Driving Hardware Augmentation by Flexible Piezoresistive Sensor Matrices with Grafted-on Anticreep Composites. Lipid Nanoparticles With Fine-Tuned Composition Show Enhanced Colon Targeting as a Platform for mRNA Therapeutics. Effects of Physical Exercise Breaks on Executive Function in a Simulated Classroom Setting: Uncovering a Window into the Brain. End-to-End Pierced Carbon Nanosheets with Meso-Holes. m6A Reader PRRC2A Promotes Colorectal Cancer Progression via CK1ε-Mediated Activation of WNT and YAP Signaling Pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1