Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics.

IF 2.1 Q3 PHARMACOLOGY & PHARMACY Advances in Pharmacological and Pharmaceutical Sciences Pub Date : 2024-06-27 eCollection Date: 2024-01-01 DOI:10.1155/2024/4862706
Ibrahim El-Serafi, Sinclair Steele
{"title":"Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics.","authors":"Ibrahim El-Serafi, Sinclair Steele","doi":"10.1155/2024/4862706","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclophosphamide (Cy) is a prodrug that is mainly bioactivated by cytochrome P450 (CYP) 2B6 enzyme. Several other enzymes are also involved in its bioactivation and affect its kinetics. Previous studies have shown the effect of the enzymes' genetic polymorphisms on Cy kinetics and its clinical outcome. These results were controversial primarily because of the involvement of several interacting enzymes in the Cy metabolic pathway, which can also be affected by several clinical factors as well as other drug interactions. In this review article, we present the effect of CYP2B6 polymorphisms on Cy kinetics since it is the main bioactivating enzyme, as well as discussing all previously reported enzymes and clinical factors that can alter Cy efficacy. Additionally, we present explanations for key Cy side effects related to the nature and site of its bioactivation. Finally, we discuss the role of busulphan in conditioning regimens in the Cy metabolic pathway as a clinical example of drug-drug interactions involving several enzymes. By the end of this article, our aim is to have provided a comprehensive summary of Cy pharmacogenomics and the effect on its kinetics. The utility of these findings in the development of new strategies for Cy personalized patient dose adjustment will aid in the future optimization of patient specific Cy dosages and ultimately in improving clinical outcomes. In conclusion, CYP2B6 and several other enzyme polymorphisms can alter Cy kinetics and consequently the clinical outcomes. However, the precise quantification of Cy kinetics in any individual patient is complex as it is clearly under multifactorial genetic control. Additionally, other clinical factors such as the patient's age, diagnosis, concomitant medications, and clinical status should also be considered.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"4862706"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pharmacological and Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/4862706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclophosphamide (Cy) is a prodrug that is mainly bioactivated by cytochrome P450 (CYP) 2B6 enzyme. Several other enzymes are also involved in its bioactivation and affect its kinetics. Previous studies have shown the effect of the enzymes' genetic polymorphisms on Cy kinetics and its clinical outcome. These results were controversial primarily because of the involvement of several interacting enzymes in the Cy metabolic pathway, which can also be affected by several clinical factors as well as other drug interactions. In this review article, we present the effect of CYP2B6 polymorphisms on Cy kinetics since it is the main bioactivating enzyme, as well as discussing all previously reported enzymes and clinical factors that can alter Cy efficacy. Additionally, we present explanations for key Cy side effects related to the nature and site of its bioactivation. Finally, we discuss the role of busulphan in conditioning regimens in the Cy metabolic pathway as a clinical example of drug-drug interactions involving several enzymes. By the end of this article, our aim is to have provided a comprehensive summary of Cy pharmacogenomics and the effect on its kinetics. The utility of these findings in the development of new strategies for Cy personalized patient dose adjustment will aid in the future optimization of patient specific Cy dosages and ultimately in improving clinical outcomes. In conclusion, CYP2B6 and several other enzyme polymorphisms can alter Cy kinetics and consequently the clinical outcomes. However, the precise quantification of Cy kinetics in any individual patient is complex as it is clearly under multifactorial genetic control. Additionally, other clinical factors such as the patient's age, diagnosis, concomitant medications, and clinical status should also be considered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌症治疗中的环磷酰胺药物基因组变异及其对生物活化和药物动力学的影响
环磷酰胺(Cy)是一种原药,主要由细胞色素 P450(CYP)2B6 酶进行生物活化。其他几种酶也参与其生物活化过程,并影响其动力学。以往的研究表明,酶的基因多态性对 Cy 动力学及其临床结果有影响。这些结果之所以存在争议,主要是因为 Cy 代谢途径中涉及多种相互作用的酶,而这些酶也会受到多种临床因素和其他药物相互作用的影响。在这篇综述文章中,我们介绍了 CYP2B6 多态性对 Cy 动力学的影响(因为它是主要的生物活化酶),并讨论了之前报道的所有可能改变 Cy 疗效的酶和临床因素。此外,我们还解释了与 Cy 生物活化的性质和部位有关的主要副作用。最后,我们讨论了丁苯酞在 Cy 代谢途径中的调理方案中的作用,以此作为涉及多种酶的药物间相互作用的临床实例。到本文结束时,我们的目标是全面总结 Cy 药物基因组学及其对动力学的影响。这些研究结果在开发 Cy 个性化患者剂量调整新策略方面的实用性将有助于未来优化特定患者的 Cy 剂量,并最终改善临床疗效。总之,CYP2B6 和其他几种酶的多态性可改变 Cy 的动力学,从而改变临床结果。然而,精确量化任何个体患者的 Cy 动力学是非常复杂的,因为它显然是受多因素遗传控制的。此外,还应考虑其他临床因素,如患者的年龄、诊断、伴随药物和临床状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
3.60%
发文量
0
审稿时长
17 weeks
期刊最新文献
Effect of Thai Herbal Remedy NL Inhibits Lipid Accumulation on 3T3-L1 Adipocyte Cells. Saikosaponin-b2 Regulates the Proliferation and Apoptosis of Liver Cancer Cells by Targeting the MACC1/c-Met/Akt Signalling Pathway. Black Mulberry (Morus nigra L.): A Review of Attributes as an Anticancer Agent to Encourage Pharmaceutical Development. Neuroprotective Effect of Benzyl Ferulate on Ischemia/Reperfusion Injury via Regulating NOX2 and NOX4 in Rats: A Potential Antioxidant for CI/R Injury. Effect of Ultrasound-Assisted Extraction and Drying Methods on Bioactive Compounds, Phenolic Composition, and Antioxidant Activity of Assam Tea Cultivar (Camellia sinensis var. assamica) Cultivated in Thailand.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1