Reem M Ramadan, Noha Madbouly Taha, Hend M Auda, Eslam M Elsamman, Mohamed M El-Bahy, Mai A Salem
{"title":"Molecular and immunological studies on Theileria equi and its vector in Egypt.","authors":"Reem M Ramadan, Noha Madbouly Taha, Hend M Auda, Eslam M Elsamman, Mohamed M El-Bahy, Mai A Salem","doi":"10.1007/s10493-024-00933-4","DOIUrl":null,"url":null,"abstract":"<p><p>Equine piroplasmosis is not fully understood regarding pathogenicity, prophylaxis, host immune response expression, and specific vectors. Accurately identifying the parasite vector is crucial for developing an effective control plan for a particular infection. This study focused on morphologically identifying two Hyalomma species (H. anatolicum and H. marginatum) and one Rhipicephalus annulatus (R. annulatus) at the species level. The identification process was followed by phylogenetic analysis using the neighbor-joining method based on the cytochrome oxidase subunit 1 (COXI) gene as a specific vector for Theileria equi (T. equi) in horses. T. equi was diagnosed morphologically and molecularly from infected blood samples and crushed tick species using conventional PCR. Subsequently, phylogenetic analysis based on the amplification of the 18 S rRNA gene was conducted. The obtained sequence data were evaluated and registered in GenBank under accession numbers OR064161, OR067911, OR187727, and OR068139, representing the three tick species and the isolated T. equi, respectively. The study demonstrated that T. equi infection leads to immune system suppression by significantly increasing the levels of oxidative stress markers (CAT, GPx, MDA, and SOD) (P ≤ 0.0001), with this elevation being directly proportional to parasitemia levels in infected blood cells. Furthermore, a correlation was observed between parasitemia levels and the expression of immune response infection genes (IFN-gamma, TGF-β1, and IL-1β cytokines) in infected horses compared to non-infected equine. Common macroscopic symptoms indicating T. equi infection in horses include intermittent fever, enlarged lymph nodes (LN), and tick infestation.</p>","PeriodicalId":12088,"journal":{"name":"Experimental and Applied Acarology","volume":" ","pages":"439-458"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Applied Acarology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10493-024-00933-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Equine piroplasmosis is not fully understood regarding pathogenicity, prophylaxis, host immune response expression, and specific vectors. Accurately identifying the parasite vector is crucial for developing an effective control plan for a particular infection. This study focused on morphologically identifying two Hyalomma species (H. anatolicum and H. marginatum) and one Rhipicephalus annulatus (R. annulatus) at the species level. The identification process was followed by phylogenetic analysis using the neighbor-joining method based on the cytochrome oxidase subunit 1 (COXI) gene as a specific vector for Theileria equi (T. equi) in horses. T. equi was diagnosed morphologically and molecularly from infected blood samples and crushed tick species using conventional PCR. Subsequently, phylogenetic analysis based on the amplification of the 18 S rRNA gene was conducted. The obtained sequence data were evaluated and registered in GenBank under accession numbers OR064161, OR067911, OR187727, and OR068139, representing the three tick species and the isolated T. equi, respectively. The study demonstrated that T. equi infection leads to immune system suppression by significantly increasing the levels of oxidative stress markers (CAT, GPx, MDA, and SOD) (P ≤ 0.0001), with this elevation being directly proportional to parasitemia levels in infected blood cells. Furthermore, a correlation was observed between parasitemia levels and the expression of immune response infection genes (IFN-gamma, TGF-β1, and IL-1β cytokines) in infected horses compared to non-infected equine. Common macroscopic symptoms indicating T. equi infection in horses include intermittent fever, enlarged lymph nodes (LN), and tick infestation.
期刊介绍:
Experimental and Applied Acarology publishes peer-reviewed original papers describing advances in basic and applied research on mites and ticks. Coverage encompasses all Acari, including those of environmental, agricultural, medical and veterinary importance, and all the ways in which they interact with other organisms (plants, arthropods and other animals). The subject matter draws upon a wide variety of disciplines, including evolutionary biology, ecology, epidemiology, physiology, biochemistry, toxicology, immunology, genetics, molecular biology and pest management sciences.